mgbam commited on
Commit
ddd0e04
Β·
verified Β·
1 Parent(s): 3ae27aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +396 -248
app.py CHANGED
@@ -1,5 +1,5 @@
1
  # ------------------------------
2
- # Imports
3
  # ------------------------------
4
  from langchain_openai import OpenAIEmbeddings
5
  from langchain_community.vectorstores import Chroma
@@ -9,306 +9,454 @@ from langgraph.graph import END, StateGraph
9
  from langgraph.prebuilt import ToolNode
10
  from langgraph.graph.message import add_messages
11
  from typing_extensions import TypedDict, Annotated
12
- from typing import Sequence, List, Dict, Any
13
  import chromadb
14
  import re
15
  import os
16
  import streamlit as st
17
  import requests
18
- import time
19
- import hashlib
20
  from langchain.tools.retriever import create_retriever_tool
21
- from datetime import datetime
22
 
23
  # ------------------------------
24
- # Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  # ------------------------------
26
  research_texts = [
27
  "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
28
  "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
29
- "Latest Trends in Machine Learning Methods Using Quantum Computing",
30
- "Advancements in Neuromorphic Computing for Energy-Efficient AI Systems",
31
- "Cross-Modal Learning: Integrating Visual and Textual Representations for Multimodal AI"
32
  ]
33
 
34
  development_texts = [
35
  "Project A: UI Design Completed, API Integration in Progress",
36
  "Project B: Testing New Feature X, Bug Fixes Needed",
37
- "Product Y: In the Performance Optimization Stage Before Release",
38
- "Framework Z: Version 3.2 Released with Enhanced Distributed Training Support",
39
- "DevOps Pipeline: Automated CI/CD Implementation for ML Model Deployment"
40
  ]
41
 
42
  # ------------------------------
43
- # Configuration
44
  # ------------------------------
45
- class AppConfig:
46
- def __init__(self):
47
- self.DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
48
- self.CHROMA_PATH = "chroma_db"
49
- self.MAX_RETRIES = 3
50
- self.RETRY_DELAY = 1.5
51
- self.DOCUMENT_CHUNK_SIZE = 300
52
- self.DOCUMENT_OVERLAP = 50
53
- self.SEARCH_K = 5
54
- self.SEARCH_TYPE = "mmr"
55
-
56
- def validate(self):
57
- if not self.DEEPSEEK_API_KEY:
58
- st.error("""
59
- **Configuration Error**
60
- πŸ”‘ Missing DeepSeek API key.
61
- Configure through Hugging Face Space secrets:
62
- 1. Space Settings β†’ Repository secrets
63
- 2. Add secret: DEEPSEEK_API_KEY=your_key
64
- 3. Rebuild Space
65
- """)
66
- st.stop()
67
 
68
  # ------------------------------
69
- # Chroma Setup
70
  # ------------------------------
71
- class ChromaManager:
72
- def __init__(self, config: AppConfig):
73
- os.makedirs(config.CHROMA_PATH, exist_ok=True)
74
- self.client = chromadb.PersistentClient(path=config.CHROMA_PATH)
75
- self.embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
76
-
77
- self.research_collection = self._create_collection(
78
- research_texts,
79
- "research_collection",
80
- {"category": "research"}
81
- )
82
- self.dev_collection = self._create_collection(
83
- development_texts,
84
- "development_collection",
85
- {"category": "development"}
86
- )
87
 
88
- def _create_collection(self, documents: List[str], name: str, metadata: dict) -> Chroma:
89
- splitter = RecursiveCharacterTextSplitter(
90
- chunk_size=300,
91
- chunk_overlap=50,
92
- separators=["\n\n", "\n", "。"]
93
- )
94
- docs = splitter.create_documents(documents)
95
- return Chroma.from_documents(
96
- documents=docs,
97
- embedding=self.embeddings,
98
- client=self.client,
99
- collection_name=name,
100
- collection_metadata=metadata
101
- )
 
 
102
 
103
  # ------------------------------
104
- # Document Processing
105
  # ------------------------------
106
- class DocumentProcessor:
107
- @staticmethod
108
- def deduplicate(docs: List[Any]) -> List[Any]:
109
- seen = set()
110
- return [doc for doc in docs
111
- if not (hashlib.md5(doc.page_content.encode()).hexdigest() in seen
112
- or seen.add(hashlib.md5(doc.page_content.encode()).hexdigest()))]
113
-
114
- @staticmethod
115
- def extract_keypoints(docs: List[Any]) -> str:
116
- categories = {
117
- "quantum": ["quantum", "qubit"],
118
- "vision": ["image", "recognition"],
119
- "nlp": ["transformer", "language"]
120
- }
121
- return "\n".join(sorted({
122
- "- " + {
123
- "quantum": "Quantum computing breakthroughs",
124
- "vision": "Computer vision advancements",
125
- "nlp": "NLP architecture innovations"
126
- }[cat]
127
- for doc in docs
128
- for cat, kw in categories.items()
129
- if any(k in doc.page_content.lower() for k in kw)
130
- }))
131
 
132
  # ------------------------------
133
- # Workflow State
134
  # ------------------------------
135
  class AgentState(TypedDict):
136
  messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
137
 
138
- # ------------------------------
139
- # Workflow Setup
140
- # ------------------------------
141
- class AgentWorkflow:
142
- def __init__(self, chroma: ChromaManager):
143
- self.chroma = chroma
144
- self.workflow = StateGraph(AgentState)
145
-
146
- # Define nodes
147
- self.workflow.add_node("agent", self.agent)
148
- self.workflow.add_node("retrieve", ToolNode([
149
- create_retriever_tool(
150
- chroma.research_collection.as_retriever(),
151
- "research_tool",
152
- "Search research documents"
153
- ),
154
- create_retriever_tool(
155
- chroma.dev_collection.as_retriever(),
156
- "dev_tool",
157
- "Search development updates"
158
- )
159
- ]))
160
- self.workflow.add_node("generate", self.generate)
161
- self.workflow.add_node("rewrite", self.rewrite)
162
-
163
- # Define edges
164
- self.workflow.set_entry_point("agent")
165
- self.workflow.add_conditional_edges(
166
- "agent",
167
- self._tools_condition,
168
- {"retrieve": "retrieve", "end": END}
169
- )
170
- self.workflow.add_conditional_edges(
171
- "retrieve",
172
- self._grade_documents,
173
- {"generate": "generate", "rewrite": "rewrite"}
 
 
 
174
  )
175
- self.workflow.add_edge("generate", END)
176
- self.workflow.add_edge("rewrite", "agent")
 
 
177
 
178
- self.app = self.workflow.compile()
 
 
 
179
 
180
- def agent(self, state: AgentState):
181
- try:
182
- messages = state["messages"]
183
- query = messages[-1].content if isinstance(messages[-1], HumanMessage) else messages[-1]['content']
184
-
185
- response = requests.post(
186
- "https://api.deepseek.com/v1/chat/completions",
187
- headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
188
- json={
189
- "model": "deepseek-chat",
190
- "messages": [{
191
- "role": "user",
192
- "content": f"""Analyze this query: "{query}"
193
- Respond EXACTLY as:
194
- - SEARCH_RESEARCH: <terms> (for research topics)
195
- - SEARCH_DEV: <terms> (for development updates)
196
- - DIRECT: <answer> (otherwise)"""
197
- }]
198
- }
199
- ).json()
200
-
201
- content = response['choices'][0]['message']['content']
202
- if "SEARCH_RESEARCH:" in content:
203
- terms = content.split("SEARCH_RESEARCH:")[1].strip()
204
- results = self.chroma.research_collection.similarity_search(terms)
205
- return {"messages": [AIMessage(content=f"Research Results: {str(results)}")]}
206
- elif "SEARCH_DEV:" in content:
207
- terms = content.split("SEARCH_DEV:")[1].strip()
208
- results = self.chroma.dev_collection.similarity_search(terms)
209
- return {"messages": [AIMessage(content=f"Development Results: {str(results)}")]}
210
- return {"messages": [AIMessage(content=content)]}
211
-
212
- except Exception as e:
213
- return {"messages": [AIMessage(content=f"Error: {str(e)}")]}
214
 
215
- def generate(self, state: AgentState):
216
- docs = eval(state["messages"][-1].content.split("Results: ")[1])
217
- processed = "\n".join([d.page_content[:200] for d in DocumentProcessor.deduplicate(docs)])
218
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
  response = requests.post(
220
  "https://api.deepseek.com/v1/chat/completions",
221
- headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
222
- json={
223
- "model": "deepseek-chat",
224
- "messages": [{
225
- "role": "user",
226
- "content": f"Summarize these findings:\n{processed}"
227
- }]
228
- }
229
- ).json()
230
 
231
- return {"messages": [AIMessage(content=response['choices'][0]['message']['content'])]}
 
 
 
 
 
 
 
 
 
 
232
 
233
- def rewrite(self, state: AgentState):
234
- original = state["messages"][0].content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
  response = requests.post(
236
  "https://api.deepseek.com/v1/chat/completions",
237
- headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
238
- json={
239
- "model": "deepseek-chat",
240
- "messages": [{
241
- "role": "user",
242
- "content": f"Rephrase this query: {original}"
243
- }]
244
- }
245
- ).json()
246
- return {"messages": [AIMessage(content=response['choices'][0]['message']['content'])]}
247
-
248
- def _tools_condition(self, state: AgentState):
249
- return "retrieve" if "Results:" in state["messages"][-1].content else "end"
250
-
251
- def _grade_documents(self, state: AgentState):
252
- return "generate" if len(eval(state["messages"][-1].content.split("Results: ")[1])) > 0 else "rewrite"
 
 
 
 
 
 
 
 
 
 
 
253
 
254
  # ------------------------------
255
- # Streamlit App
256
  # ------------------------------
257
- def apply_theme():
258
- st.markdown("""
259
- <style>
260
- .stApp { background: #1a1a1a; color: white; }
261
- .stTextArea textarea { background: #2d2d2d !important; color: white !important; }
262
- .stButton>button { background: #2E86C1; transition: 0.3s; }
263
- .stButton>button:hover { background: #1B4F72; transform: scale(1.02); }
264
- .data-box { background: #2d2d2d; border-left: 4px solid #2E86C1; padding: 15px; margin: 10px 0; }
265
- </style>
266
- """, unsafe_allow_html=True)
267
 
268
- def main(config: AppConfig, chroma: ChromaManager):
269
- apply_theme()
270
-
271
- with st.sidebar:
272
- st.header("πŸ“š Databases")
273
- with st.expander("Research", expanded=True):
274
- for text in research_texts:
275
- st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
276
- with st.expander("Development"):
277
- for text in development_texts:
278
- st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
279
-
280
- st.title("πŸ” AI Research Assistant")
281
- query = st.text_area("Enter your query:", height=100)
282
-
283
- if st.button("Analyze"):
284
- with st.spinner("Processing..."):
285
- try:
286
- workflow = AgentWorkflow(chroma)
287
- results = workflow.app.invoke({"messages": [HumanMessage(content=query)]})
288
-
289
- with st.expander("Processing Details", expanded=True):
290
- st.write("### Raw Results", results)
291
-
292
- st.success("### Final Answer")
293
- st.markdown(results['messages'][-1].content)
294
-
295
- except Exception as e:
296
- st.error(f"Processing failed: {str(e)}")
 
 
 
 
 
297
 
298
  # ------------------------------
299
- # Initialization
300
  # ------------------------------
301
- if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
302
  st.set_page_config(
303
- page_title="AI Research Assistant",
304
  layout="wide",
305
  initial_sidebar_state="expanded"
306
  )
 
 
 
 
 
 
 
307
 
308
- try:
309
- config = AppConfig()
310
- config.validate()
311
- chroma = ChromaManager(config)
312
- main(config, chroma)
313
- except Exception as e:
314
- st.error(f"Initialization failed: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # ------------------------------
2
+ # Imports & Dependencies
3
  # ------------------------------
4
  from langchain_openai import OpenAIEmbeddings
5
  from langchain_community.vectorstores import Chroma
 
9
  from langgraph.prebuilt import ToolNode
10
  from langgraph.graph.message import add_messages
11
  from typing_extensions import TypedDict, Annotated
12
+ from typing import Sequence
13
  import chromadb
14
  import re
15
  import os
16
  import streamlit as st
17
  import requests
 
 
18
  from langchain.tools.retriever import create_retriever_tool
 
19
 
20
  # ------------------------------
21
+ # Configuration
22
+ # ------------------------------
23
+ # Get DeepSeek API key from Hugging Face Space secrets
24
+ DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
25
+
26
+ if not DEEPSEEK_API_KEY:
27
+ st.error("""
28
+ **Missing API Configuration**
29
+ Please configure your DeepSeek API key in Hugging Face Space secrets:
30
+ 1. Go to your Space's Settings
31
+ 2. Click on 'Repository secrets'
32
+ 3. Add a secret named DEEPSEEK_API_KEY
33
+ """)
34
+ st.stop()
35
+
36
+ # Create directory for Chroma persistence
37
+ os.makedirs("chroma_db", exist_ok=True)
38
+
39
+ # ------------------------------
40
+ # ChromaDB Client Configuration
41
+ # ------------------------------
42
+ chroma_client = chromadb.PersistentClient(path="chroma_db")
43
+
44
+ # ------------------------------
45
+ # Dummy Data: Research & Development Texts
46
  # ------------------------------
47
  research_texts = [
48
  "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
49
  "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
50
+ "Latest Trends in Machine Learning Methods Using Quantum Computing"
 
 
51
  ]
52
 
53
  development_texts = [
54
  "Project A: UI Design Completed, API Integration in Progress",
55
  "Project B: Testing New Feature X, Bug Fixes Needed",
56
+ "Product Y: In the Performance Optimization Stage Before Release"
 
 
57
  ]
58
 
59
  # ------------------------------
60
+ # Text Splitting & Document Creation
61
  # ------------------------------
62
+ splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
63
+ research_docs = splitter.create_documents(research_texts)
64
+ development_docs = splitter.create_documents(development_texts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  # ------------------------------
67
+ # Creating Vector Stores with Embeddings
68
  # ------------------------------
69
+ embeddings = OpenAIEmbeddings(
70
+ model="text-embedding-3-large",
71
+ # dimensions=1024 # Uncomment if needed
72
+ )
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ research_vectorstore = Chroma.from_documents(
75
+ documents=research_docs,
76
+ embedding=embeddings,
77
+ client=chroma_client,
78
+ collection_name="research_collection"
79
+ )
80
+
81
+ development_vectorstore = Chroma.from_documents(
82
+ documents=development_docs,
83
+ embedding=embeddings,
84
+ client=chroma_client,
85
+ collection_name="development_collection"
86
+ )
87
+
88
+ research_retriever = research_vectorstore.as_retriever()
89
+ development_retriever = development_vectorstore.as_retriever()
90
 
91
  # ------------------------------
92
+ # Creating Retriever Tools
93
  # ------------------------------
94
+ research_tool = create_retriever_tool(
95
+ research_retriever,
96
+ "research_db_tool",
97
+ "Search information from the research database."
98
+ )
99
+
100
+ development_tool = create_retriever_tool(
101
+ development_retriever,
102
+ "development_db_tool",
103
+ "Search information from the development database."
104
+ )
105
+
106
+ tools = [research_tool, development_tool]
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  # ------------------------------
109
+ # Agent Function & Workflow Functions
110
  # ------------------------------
111
  class AgentState(TypedDict):
112
  messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
113
 
114
+ def agent(state: AgentState):
115
+ print("---CALL AGENT---")
116
+ messages = state["messages"]
117
+
118
+ if isinstance(messages[0], tuple):
119
+ user_message = messages[0][1]
120
+ else:
121
+ user_message = messages[0].content
122
+
123
+ prompt = f"""Given this user question: "{user_message}"
124
+ If it's about research or academic topics, respond EXACTLY in this format:
125
+ SEARCH_RESEARCH: <search terms>
126
+
127
+ If it's about development status, respond EXACTLY in this format:
128
+ SEARCH_DEV: <search terms>
129
+
130
+ Otherwise, just answer directly.
131
+ """
132
+
133
+ headers = {
134
+ "Accept": "application/json",
135
+ "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
136
+ "Content-Type": "application/json"
137
+ }
138
+
139
+ data = {
140
+ "model": "deepseek-chat",
141
+ "messages": [{"role": "user", "content": prompt}],
142
+ "temperature": 0.7,
143
+ "max_tokens": 1024
144
+ }
145
+
146
+ try:
147
+ response = requests.post(
148
+ "https://api.deepseek.com/v1/chat/completions",
149
+ headers=headers,
150
+ json=data,
151
+ verify=False,
152
+ timeout=30
153
  )
154
+ response.raise_for_status()
155
+
156
+ response_text = response.json()['choices'][0]['message']['content']
157
+ print("Raw response:", response_text)
158
 
159
+ if "SEARCH_RESEARCH:" in response_text:
160
+ query = response_text.split("SEARCH_RESEARCH:")[1].strip()
161
+ results = research_retriever.invoke(query)
162
+ return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
163
 
164
+ elif "SEARCH_DEV:" in response_text:
165
+ query = response_text.split("SEARCH_DEV:")[1].strip()
166
+ results = development_retriever.invoke(query)
167
+ return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
+ else:
170
+ return {"messages": [AIMessage(content=response_text)]}
171
+
172
+ except Exception as e:
173
+ error_msg = f"API Error: {str(e)}"
174
+ if "Insufficient Balance" in str(e):
175
+ error_msg += "\n\nPlease check your DeepSeek API account balance."
176
+ return {"messages": [AIMessage(content=error_msg)]}
177
+
178
+ def simple_grade_documents(state: AgentState):
179
+ messages = state["messages"]
180
+ last_message = messages[-1]
181
+ print("Evaluating message:", last_message.content)
182
+
183
+ if "Results: [Document" in last_message.content:
184
+ print("---DOCS FOUND, GO TO GENERATE---")
185
+ return "generate"
186
+ else:
187
+ print("---NO DOCS FOUND, TRY REWRITE---")
188
+ return "rewrite"
189
+
190
+ def generate(state: AgentState):
191
+ print("---GENERATE FINAL ANSWER---")
192
+ messages = state["messages"]
193
+ question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
194
+ last_message = messages[-1]
195
+
196
+ docs = ""
197
+ if "Results: [" in last_message.content:
198
+ results_start = last_message.content.find("Results: [")
199
+ docs = last_message.content[results_start:]
200
+ print("Documents found:", docs)
201
+
202
+ headers = {
203
+ "Accept": "application/json",
204
+ "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
205
+ "Content-Type": "application/json"
206
+ }
207
+
208
+ prompt = f"""Based on these research documents, summarize the latest advancements in AI:
209
+ Question: {question}
210
+ Documents: {docs}
211
+ Focus on extracting and synthesizing the key findings from the research papers.
212
+ """
213
+
214
+ data = {
215
+ "model": "deepseek-chat",
216
+ "messages": [{
217
+ "role": "user",
218
+ "content": prompt
219
+ }],
220
+ "temperature": 0.7,
221
+ "max_tokens": 1024
222
+ }
223
+
224
+ try:
225
+ print("Sending generate request to API...")
226
  response = requests.post(
227
  "https://api.deepseek.com/v1/chat/completions",
228
+ headers=headers,
229
+ json=data,
230
+ verify=False,
231
+ timeout=30
232
+ )
233
+ response.raise_for_status()
 
 
 
234
 
235
+ response_text = response.json()['choices'][0]['message']['content']
236
+ print("Final Answer:", response_text)
237
+ return {"messages": [AIMessage(content=response_text)]}
238
+ except Exception as e:
239
+ error_msg = f"Generation Error: {str(e)}"
240
+ return {"messages": [AIMessage(content=error_msg)]}
241
+
242
+ def rewrite(state: AgentState):
243
+ print("---REWRITE QUESTION---")
244
+ messages = state["messages"]
245
+ original_question = messages[0].content if len(messages) > 0 else "N/A"
246
 
247
+ headers = {
248
+ "Accept": "application/json",
249
+ "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
250
+ "Content-Type": "application/json"
251
+ }
252
+
253
+ data = {
254
+ "model": "deepseek-chat",
255
+ "messages": [{
256
+ "role": "user",
257
+ "content": f"Rewrite this question to be more specific and clearer: {original_question}"
258
+ }],
259
+ "temperature": 0.7,
260
+ "max_tokens": 1024
261
+ }
262
+
263
+ try:
264
+ print("Sending rewrite request...")
265
  response = requests.post(
266
  "https://api.deepseek.com/v1/chat/completions",
267
+ headers=headers,
268
+ json=data,
269
+ verify=False,
270
+ timeout=30
271
+ )
272
+ response.raise_for_status()
273
+
274
+ response_text = response.json()['choices'][0]['message']['content']
275
+ print("Rewritten question:", response_text)
276
+ return {"messages": [AIMessage(content=response_text)]}
277
+ except Exception as e:
278
+ error_msg = f"Rewrite Error: {str(e)}"
279
+ return {"messages": [AIMessage(content=error_msg)]}
280
+
281
+ tools_pattern = re.compile(r"Action: .*")
282
+
283
+ def custom_tools_condition(state: AgentState):
284
+ messages = state["messages"]
285
+ last_message = messages[-1]
286
+ content = last_message.content
287
+
288
+ print("Checking tools condition:", content)
289
+ if tools_pattern.match(content):
290
+ print("Moving to retrieve...")
291
+ return "tools"
292
+ print("Moving to END...")
293
+ return END
294
 
295
  # ------------------------------
296
+ # Workflow Configuration using LangGraph
297
  # ------------------------------
298
+ workflow = StateGraph(AgentState)
 
 
 
 
 
 
 
 
 
299
 
300
+ # Add nodes
301
+ workflow.add_node("agent", agent)
302
+ retrieve_node = ToolNode(tools)
303
+ workflow.add_node("retrieve", retrieve_node)
304
+ workflow.add_node("rewrite", rewrite)
305
+ workflow.add_node("generate", generate)
306
+
307
+ # Set entry point
308
+ workflow.set_entry_point("agent")
309
+
310
+ # Define transitions
311
+ workflow.add_conditional_edges(
312
+ "agent",
313
+ custom_tools_condition,
314
+ {
315
+ "tools": "retrieve",
316
+ END: END
317
+ }
318
+ )
319
+
320
+ workflow.add_conditional_edges(
321
+ "retrieve",
322
+ simple_grade_documents,
323
+ {
324
+ "generate": "generate",
325
+ "rewrite": "rewrite"
326
+ }
327
+ )
328
+
329
+ workflow.add_edge("generate", END)
330
+ workflow.add_edge("rewrite", "agent")
331
+
332
+ # Compile the workflow
333
+ app = workflow.compile()
334
 
335
  # ------------------------------
336
+ # Processing Function
337
  # ------------------------------
338
+ def process_question(user_question, app, config):
339
+ """Process user question through the workflow"""
340
+ events = []
341
+ for event in app.stream({"messages": [("user", user_question)]}, config):
342
+ events.append(event)
343
+ return events
344
+
345
+ # ------------------------------
346
+ # Streamlit App UI (Dark Theme)
347
+ # ------------------------------
348
+ def main():
349
  st.set_page_config(
350
+ page_title="AI Research & Development Assistant",
351
  layout="wide",
352
  initial_sidebar_state="expanded"
353
  )
354
+
355
+ st.markdown("""
356
+ <style>
357
+ .stApp {
358
+ background-color: #1a1a1a;
359
+ color: #ffffff;
360
+ }
361
 
362
+ .stTextArea textarea {
363
+ background-color: #2d2d2d !important;
364
+ color: #ffffff !important;
365
+ }
366
+
367
+ .stButton > button {
368
+ background-color: #4CAF50;
369
+ color: white;
370
+ transition: all 0.3s;
371
+ }
372
+
373
+ .stButton > button:hover {
374
+ background-color: #45a049;
375
+ transform: scale(1.02);
376
+ }
377
+
378
+ .data-box {
379
+ background-color: #2d2d2d;
380
+ border-left: 5px solid #2196F3;
381
+ }
382
+
383
+ .dev-box {
384
+ border-left: 5px solid #4CAF50;
385
+ }
386
+
387
+ .st-expander {
388
+ background-color: #2d2d2d;
389
+ border: 1px solid #3d3d3d;
390
+ }
391
+ </style>
392
+ """, unsafe_allow_html=True)
393
+
394
+ with st.sidebar:
395
+ st.header("πŸ“š Available Data")
396
+ st.subheader("Research Database")
397
+ for text in research_texts:
398
+ st.markdown(f'<div class="data-box research-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
399
+
400
+ st.subheader("Development Database")
401
+ for text in development_texts:
402
+ st.markdown(f'<div class="data-box dev-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
403
+
404
+ st.title("πŸ€– AI Research & Development Assistant")
405
+ st.markdown("---")
406
+
407
+ query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
408
+
409
+ col1, col2 = st.columns([1, 2])
410
+ with col1:
411
+ if st.button("πŸ” Get Answer", use_container_width=True):
412
+ if query:
413
+ try:
414
+ with st.spinner('Processing your question...'):
415
+ events = process_question(query, app, {"configurable": {"thread_id": "1"}})
416
+
417
+ for event in events:
418
+ if 'agent' in event:
419
+ with st.expander("πŸ”„ Processing Step", expanded=True):
420
+ content = event['agent']['messages'][0].content
421
+ if "Error" in content:
422
+ st.error(content)
423
+ elif "Results:" in content:
424
+ st.markdown("### πŸ“‘ Retrieved Documents:")
425
+ docs_start = content.find("Results:")
426
+ docs = content[docs_start:]
427
+ st.info(docs)
428
+ elif 'generate' in event:
429
+ content = event['generate']['messages'][0].content
430
+ if "Error" in content:
431
+ st.error(content)
432
+ else:
433
+ st.markdown("### ✨ Final Answer:")
434
+ st.success(content)
435
+ except Exception as e:
436
+ st.error(f"""
437
+ **Processing Error**
438
+ {str(e)}
439
+ Please check:
440
+ - API key configuration
441
+ - Account balance
442
+ - Network connection
443
+ """)
444
+ else:
445
+ st.warning("⚠️ Please enter a question first!")
446
+
447
+ with col2:
448
+ st.markdown("""
449
+ ### 🎯 How to Use
450
+ 1. Enter your question in the text box
451
+ 2. Click the search button
452
+ 3. Review processing steps
453
+ 4. See final answer
454
+
455
+ ### πŸ’‘ Example Questions
456
+ - What's new in AI image recognition?
457
+ - How is Project B progressing?
458
+ - Recent machine learning trends?
459
+ """)
460
+
461
+ if __name__ == "__main__":
462
+ main()