Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,30 @@
|
|
3 |
# ------------------------------
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
-
from langchain_core.documents import Document
|
9 |
from langgraph.graph import END, StateGraph
|
10 |
-
from langgraph.
|
|
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
from typing import Sequence, Dict, List, Optional, Any
|
13 |
import chromadb
|
14 |
-
import
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
import hashlib
|
19 |
-
import
|
20 |
import time
|
|
|
21 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
22 |
from datetime import datetime
|
23 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
24 |
|
25 |
# ------------------------------
|
26 |
-
# State Schema Definition
|
27 |
# ------------------------------
|
28 |
class AgentState(TypedDict):
|
29 |
-
messages: Annotated[
|
30 |
-
Sequence[AIMessage | HumanMessage],
|
31 |
-
add_messages # <-- NOW PROPERLY DEFINED
|
32 |
-
]
|
33 |
context: Dict[str, Any]
|
34 |
metadata: Dict[str, Any]
|
35 |
|
@@ -43,62 +40,37 @@ class ResearchConfig:
|
|
43 |
CHUNK_OVERLAP = 64
|
44 |
MAX_CONCURRENT_REQUESTS = 5
|
45 |
EMBEDDING_DIMENSIONS = 1536
|
46 |
-
|
47 |
DOCUMENT_MAP = {
|
48 |
-
"
|
49 |
-
"
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
"""
|
55 |
-
},
|
56 |
-
"Quantum ML": {
|
57 |
-
"title": "Quantum Machine Learning",
|
58 |
-
"content": """
|
59 |
-
Quantum-enhanced optimization techniques for ML models.
|
60 |
-
$\theta_{t+1} = \theta_t - \eta \nabla_\theta \mathcal{L}(\theta_t)$
|
61 |
-
100x speedup on optimization tasks with 58% energy reduction
|
62 |
-
"""
|
63 |
-
}
|
64 |
}
|
65 |
-
|
66 |
-
ANALYSIS_TEMPLATE = """Analyze these technical documents:
|
67 |
{context}
|
68 |
|
69 |
-
Respond
|
70 |
-
1.
|
71 |
-
2.
|
72 |
-
3.
|
73 |
-
4.
|
74 |
-
5.
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
# Check for Chroma migration
|
79 |
-
if os.path.exists(ResearchConfig.CHROMA_PATH):
|
80 |
-
st.warning("""
|
81 |
-
**ChromDB Migration Required**
|
82 |
-
Existing Chroma database detected. Run these commands:
|
83 |
-
|
84 |
-
```bash
|
85 |
-
pip install chroma-migrate
|
86 |
-
chroma-migrate
|
87 |
-
```
|
88 |
-
|
89 |
-
Then restart the application.
|
90 |
-
""")
|
91 |
-
st.stop()
|
92 |
|
|
|
93 |
if not ResearchConfig.DEEPSEEK_API_KEY:
|
94 |
-
st.error("""**Configuration Required**
|
95 |
-
1.
|
96 |
-
2.
|
97 |
3. Rebuild deployment""")
|
98 |
st.stop()
|
99 |
|
100 |
# ------------------------------
|
101 |
-
#
|
102 |
# ------------------------------
|
103 |
class QuantumDocumentManager:
|
104 |
def __init__(self):
|
@@ -107,82 +79,97 @@ class QuantumDocumentManager:
|
|
107 |
model="text-embedding-3-large",
|
108 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
109 |
)
|
110 |
-
|
111 |
-
def create_collection(self,
|
112 |
splitter = RecursiveCharacterTextSplitter(
|
113 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
114 |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
115 |
separators=["\n\n", "\n", "|||"]
|
116 |
)
|
117 |
-
|
118 |
-
docs = []
|
119 |
-
for key, data in document_map.items():
|
120 |
-
chunks = splitter.split_text(data["content"])
|
121 |
-
for chunk in chunks:
|
122 |
-
docs.append(Document(
|
123 |
-
page_content=chunk,
|
124 |
-
metadata={
|
125 |
-
"title": data["title"],
|
126 |
-
"source": collection_name,
|
127 |
-
"hash": hashlib.sha256(chunk.encode()).hexdigest()[:16]
|
128 |
-
}
|
129 |
-
))
|
130 |
-
|
131 |
return Chroma.from_documents(
|
132 |
documents=docs,
|
133 |
embedding=self.embeddings,
|
134 |
-
collection_name=collection_name,
|
135 |
client=self.client,
|
|
|
136 |
ids=[self._document_id(doc.page_content) for doc in docs]
|
137 |
)
|
138 |
|
139 |
def _document_id(self, content: str) -> str:
|
140 |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
141 |
|
142 |
-
# Initialize document
|
143 |
qdm = QuantumDocumentManager()
|
144 |
-
research_docs = qdm.create_collection(
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
# ------------------------------
|
148 |
-
# Retrieval System
|
149 |
# ------------------------------
|
150 |
class ResearchRetriever:
|
151 |
def __init__(self):
|
152 |
-
self.
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
def retrieve(self, query: str) -> List[
|
162 |
try:
|
163 |
-
|
164 |
-
|
165 |
-
raise ValueError("No relevant documents found")
|
166 |
-
return docs
|
167 |
-
except Exception as e:
|
168 |
-
st.error(f"Retrieval Error: {str(e)}")
|
169 |
return []
|
170 |
|
|
|
|
|
171 |
# ------------------------------
|
172 |
-
#
|
173 |
# ------------------------------
|
174 |
class CognitiveProcessor:
|
175 |
def __init__(self):
|
176 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
|
|
177 |
|
178 |
def process_query(self, prompt: str) -> Dict:
|
179 |
-
futures = [
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
headers = {
|
184 |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
185 |
-
"Content-Type": "application/json"
|
|
|
186 |
}
|
187 |
|
188 |
try:
|
@@ -203,35 +190,30 @@ class CognitiveProcessor:
|
|
203 |
)
|
204 |
response.raise_for_status()
|
205 |
return response.json()
|
206 |
-
except
|
207 |
return {"error": str(e)}
|
208 |
|
209 |
-
def
|
210 |
valid = [r for r in results if "error" not in r]
|
211 |
if not valid:
|
212 |
return {"error": "All API requests failed"}
|
213 |
-
|
214 |
-
# Select response with most technical content
|
215 |
-
contents = [r.get('choices', [{}])[0].get('message', {}).get('content', '') for r in valid]
|
216 |
-
tech_scores = [len(re.findall(r"\$.*?\$", c)) for c in contents]
|
217 |
-
return valid[np.argmax(tech_scores)]
|
218 |
|
219 |
# ------------------------------
|
220 |
-
# Workflow Engine
|
221 |
# ------------------------------
|
222 |
class ResearchWorkflow:
|
223 |
def __init__(self):
|
224 |
-
self.retriever = ResearchRetriever()
|
225 |
self.processor = CognitiveProcessor()
|
226 |
self.workflow = StateGraph(AgentState)
|
227 |
self._build_workflow()
|
228 |
|
229 |
def _build_workflow(self):
|
230 |
-
self.workflow.add_node("ingest", self.
|
231 |
-
self.workflow.add_node("retrieve", self.
|
232 |
-
self.workflow.add_node("analyze", self.
|
233 |
-
self.workflow.add_node("validate", self.
|
234 |
-
self.workflow.add_node("refine", self.
|
235 |
|
236 |
self.workflow.set_entry_point("ingest")
|
237 |
self.workflow.add_edge("ingest", "retrieve")
|
@@ -246,93 +228,83 @@ class ResearchWorkflow:
|
|
246 |
|
247 |
self.app = self.workflow.compile()
|
248 |
|
249 |
-
def
|
250 |
try:
|
251 |
query = state["messages"][-1].content
|
252 |
return {
|
253 |
-
"messages": [AIMessage(content="Query ingested")],
|
254 |
-
"context": {"
|
255 |
"metadata": {"timestamp": datetime.now().isoformat()}
|
256 |
}
|
257 |
except Exception as e:
|
258 |
return self._error_state(f"Ingestion Error: {str(e)}")
|
259 |
|
260 |
-
def
|
261 |
try:
|
262 |
-
|
|
|
263 |
return {
|
264 |
-
"messages": [AIMessage(content=f"
|
265 |
-
"context": {
|
|
|
|
|
|
|
266 |
}
|
267 |
except Exception as e:
|
268 |
return self._error_state(f"Retrieval Error: {str(e)}")
|
269 |
|
270 |
-
def
|
271 |
try:
|
272 |
-
|
273 |
-
|
274 |
-
for doc in state["context"]["docs"]
|
275 |
-
])
|
276 |
-
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=context)
|
277 |
response = self.processor.process_query(prompt)
|
278 |
|
279 |
if "error" in response:
|
280 |
-
|
281 |
-
|
282 |
-
content = response['choices'][0]['message']['content']
|
283 |
-
self._validate_analysis(content)
|
284 |
|
285 |
-
return {
|
|
|
|
|
|
|
286 |
except Exception as e:
|
287 |
return self._error_state(f"Analysis Error: {str(e)}")
|
288 |
|
289 |
-
def
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
299 |
|
300 |
response = self.processor.process_query(validation_prompt)
|
301 |
-
valid = "VALID" in response.get('choices', [{}])[0].get('message', {}).get('content', '')
|
302 |
return {
|
303 |
-
"messages": [AIMessage(content=f"
|
304 |
-
"context": {"valid": valid}
|
305 |
}
|
306 |
|
307 |
-
def
|
308 |
-
refinement_prompt = f"""
|
309 |
-
{state["messages"][-1].content}
|
310 |
-
|
311 |
-
|
312 |
-
1.
|
313 |
-
2.
|
314 |
-
3.
|
315 |
|
316 |
response = self.processor.process_query(refinement_prompt)
|
317 |
-
return {
|
|
|
|
|
|
|
318 |
|
319 |
def _quality_check(self, state: AgentState) -> str:
|
320 |
-
|
321 |
-
|
322 |
-
def _validate_analysis(self, content: str):
|
323 |
-
required_sections = [
|
324 |
-
"Key Innovations",
|
325 |
-
"Methodologies",
|
326 |
-
"Empirical Results",
|
327 |
-
"Applications",
|
328 |
-
"Limitations"
|
329 |
-
]
|
330 |
-
missing = [s for s in required_sections if f"## {s}" not in content]
|
331 |
-
if missing:
|
332 |
-
raise ValueError(f"Missing sections: {', '.join(missing)}")
|
333 |
-
|
334 |
-
if not re.search(r"\$.*?\$", content):
|
335 |
-
raise ValueError("Analysis lacks mathematical notation")
|
336 |
|
337 |
def _error_state(self, message: str) -> Dict:
|
338 |
return {
|
@@ -342,22 +314,22 @@ Focus on:
|
|
342 |
}
|
343 |
|
344 |
# ------------------------------
|
345 |
-
#
|
346 |
# ------------------------------
|
347 |
class ResearchInterface:
|
348 |
def __init__(self):
|
349 |
self.workflow = ResearchWorkflow()
|
350 |
-
self.
|
351 |
|
352 |
-
def
|
353 |
st.set_page_config(
|
354 |
-
page_title="AI
|
355 |
layout="wide",
|
356 |
initial_sidebar_state="expanded"
|
357 |
)
|
358 |
self._inject_styles()
|
359 |
self._build_sidebar()
|
360 |
-
self.
|
361 |
|
362 |
def _inject_styles(self):
|
363 |
st.markdown("""
|
@@ -366,72 +338,115 @@ class ResearchInterface:
|
|
366 |
--primary: #2ecc71;
|
367 |
--secondary: #3498db;
|
368 |
--background: #0a0a0a;
|
|
|
369 |
}
|
|
|
370 |
.stApp {
|
371 |
background: var(--background);
|
372 |
-
color:
|
|
|
373 |
}
|
|
|
374 |
.stTextArea textarea {
|
375 |
background: #1a1a1a !important;
|
376 |
-
|
|
|
|
|
|
|
377 |
}
|
378 |
-
|
379 |
-
|
380 |
-
background:
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
}
|
383 |
</style>
|
384 |
""", unsafe_allow_html=True)
|
385 |
|
386 |
def _build_sidebar(self):
|
387 |
with st.sidebar:
|
388 |
-
st.title("
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
398 |
|
399 |
-
if st.button("
|
400 |
self._execute_analysis(query)
|
401 |
|
402 |
def _execute_analysis(self, query: str):
|
403 |
try:
|
404 |
-
with st.spinner("
|
405 |
-
|
406 |
-
{"messages": [HumanMessage(content=query)]}
|
407 |
)
|
408 |
|
409 |
-
|
410 |
-
self.
|
411 |
-
|
412 |
-
|
413 |
except Exception as e:
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
if __name__ == "__main__":
|
437 |
ResearchInterface()
|
|
|
3 |
# ------------------------------
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
8 |
from langgraph.graph import END, StateGraph
|
9 |
+
from langgraph.prebuilt import ToolNode
|
10 |
+
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
from typing import Sequence, Dict, List, Optional, Any
|
13 |
import chromadb
|
14 |
+
import re
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
import hashlib
|
19 |
+
import json
|
20 |
import time
|
21 |
+
from langchain.tools.retriever import create_retriever_tool
|
22 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
23 |
from datetime import datetime
|
|
|
24 |
|
25 |
# ------------------------------
|
26 |
+
# State Schema Definition
|
27 |
# ------------------------------
|
28 |
class AgentState(TypedDict):
|
29 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
|
|
|
|
|
|
30 |
context: Dict[str, Any]
|
31 |
metadata: Dict[str, Any]
|
32 |
|
|
|
40 |
CHUNK_OVERLAP = 64
|
41 |
MAX_CONCURRENT_REQUESTS = 5
|
42 |
EMBEDDING_DIMENSIONS = 1536
|
|
|
43 |
DOCUMENT_MAP = {
|
44 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
|
45 |
+
"CV-Transformer Hybrid Architecture",
|
46 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
|
47 |
+
"Transformer Architecture Analysis",
|
48 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing":
|
49 |
+
"Quantum ML Frontiers"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
}
|
51 |
+
ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
|
|
|
52 |
{context}
|
53 |
|
54 |
+
Respond with:
|
55 |
+
1. Key Technical Contributions (bullet points)
|
56 |
+
2. Novel Methodologies
|
57 |
+
3. Empirical Results (with metrics)
|
58 |
+
4. Potential Applications
|
59 |
+
5. Limitations & Future Directions
|
60 |
|
61 |
+
Format: Markdown with LaTeX mathematical notation where applicable
|
62 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Validation
|
65 |
if not ResearchConfig.DEEPSEEK_API_KEY:
|
66 |
+
st.error("""**Research Portal Configuration Required**
|
67 |
+
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
|
68 |
+
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
|
69 |
3. Rebuild deployment""")
|
70 |
st.stop()
|
71 |
|
72 |
# ------------------------------
|
73 |
+
# Quantum Document Processing
|
74 |
# ------------------------------
|
75 |
class QuantumDocumentManager:
|
76 |
def __init__(self):
|
|
|
79 |
model="text-embedding-3-large",
|
80 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
81 |
)
|
82 |
+
|
83 |
+
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
|
84 |
splitter = RecursiveCharacterTextSplitter(
|
85 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
86 |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
87 |
separators=["\n\n", "\n", "|||"]
|
88 |
)
|
89 |
+
docs = splitter.create_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return Chroma.from_documents(
|
91 |
documents=docs,
|
92 |
embedding=self.embeddings,
|
|
|
93 |
client=self.client,
|
94 |
+
collection_name=collection_name,
|
95 |
ids=[self._document_id(doc.page_content) for doc in docs]
|
96 |
)
|
97 |
|
98 |
def _document_id(self, content: str) -> str:
|
99 |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
100 |
|
101 |
+
# Initialize document collections
|
102 |
qdm = QuantumDocumentManager()
|
103 |
+
research_docs = qdm.create_collection([
|
104 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
105 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
106 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
107 |
+
], "research")
|
108 |
+
|
109 |
+
development_docs = qdm.create_collection([
|
110 |
+
"Project A: UI Design Completed, API Integration in Progress",
|
111 |
+
"Project B: Testing New Feature X, Bug Fixes Needed",
|
112 |
+
"Product Y: In the Performance Optimization Stage Before Release"
|
113 |
+
], "development")
|
114 |
|
115 |
# ------------------------------
|
116 |
+
# Advanced Retrieval System
|
117 |
# ------------------------------
|
118 |
class ResearchRetriever:
|
119 |
def __init__(self):
|
120 |
+
self.retrievers = {
|
121 |
+
"research": research_docs.as_retriever(
|
122 |
+
search_type="mmr",
|
123 |
+
search_kwargs={
|
124 |
+
'k': 4,
|
125 |
+
'fetch_k': 20,
|
126 |
+
'lambda_mult': 0.85
|
127 |
+
}
|
128 |
+
),
|
129 |
+
"development": development_docs.as_retriever(
|
130 |
+
search_type="similarity",
|
131 |
+
search_kwargs={'k': 3}
|
132 |
+
)
|
133 |
+
}
|
134 |
|
135 |
+
def retrieve(self, query: str, domain: str) -> List[Any]:
|
136 |
try:
|
137 |
+
return self.retrievers[domain].invoke(query)
|
138 |
+
except KeyError:
|
|
|
|
|
|
|
|
|
139 |
return []
|
140 |
|
141 |
+
retriever = ResearchRetriever()
|
142 |
+
|
143 |
# ------------------------------
|
144 |
+
# Cognitive Processing Unit
|
145 |
# ------------------------------
|
146 |
class CognitiveProcessor:
|
147 |
def __init__(self):
|
148 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
149 |
+
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
|
150 |
|
151 |
def process_query(self, prompt: str) -> Dict:
|
152 |
+
futures = []
|
153 |
+
for _ in range(3): # Triple redundancy
|
154 |
+
futures.append(self.executor.submit(
|
155 |
+
self._execute_api_request,
|
156 |
+
prompt
|
157 |
+
))
|
158 |
+
|
159 |
+
results = []
|
160 |
+
for future in as_completed(futures):
|
161 |
+
try:
|
162 |
+
results.append(future.result())
|
163 |
+
except Exception as e:
|
164 |
+
st.error(f"Processing Error: {str(e)}")
|
165 |
+
|
166 |
+
return self._consensus_check(results)
|
167 |
+
|
168 |
+
def _execute_api_request(self, prompt: str) -> Dict:
|
169 |
headers = {
|
170 |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
171 |
+
"Content-Type": "application/json",
|
172 |
+
"X-Research-Session": self.session_id
|
173 |
}
|
174 |
|
175 |
try:
|
|
|
190 |
)
|
191 |
response.raise_for_status()
|
192 |
return response.json()
|
193 |
+
except requests.exceptions.RequestException as e:
|
194 |
return {"error": str(e)}
|
195 |
|
196 |
+
def _consensus_check(self, results: List[Dict]) -> Dict:
|
197 |
valid = [r for r in results if "error" not in r]
|
198 |
if not valid:
|
199 |
return {"error": "All API requests failed"}
|
200 |
+
return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# ------------------------------
|
203 |
+
# Research Workflow Engine
|
204 |
# ------------------------------
|
205 |
class ResearchWorkflow:
|
206 |
def __init__(self):
|
|
|
207 |
self.processor = CognitiveProcessor()
|
208 |
self.workflow = StateGraph(AgentState)
|
209 |
self._build_workflow()
|
210 |
|
211 |
def _build_workflow(self):
|
212 |
+
self.workflow.add_node("ingest", self.ingest_query)
|
213 |
+
self.workflow.add_node("retrieve", self.retrieve_documents)
|
214 |
+
self.workflow.add_node("analyze", self.analyze_content)
|
215 |
+
self.workflow.add_node("validate", self.validate_output)
|
216 |
+
self.workflow.add_node("refine", self.refine_results)
|
217 |
|
218 |
self.workflow.set_entry_point("ingest")
|
219 |
self.workflow.add_edge("ingest", "retrieve")
|
|
|
228 |
|
229 |
self.app = self.workflow.compile()
|
230 |
|
231 |
+
def ingest_query(self, state: AgentState) -> Dict:
|
232 |
try:
|
233 |
query = state["messages"][-1].content
|
234 |
return {
|
235 |
+
"messages": [AIMessage(content="Query ingested successfully")],
|
236 |
+
"context": {"raw_query": query},
|
237 |
"metadata": {"timestamp": datetime.now().isoformat()}
|
238 |
}
|
239 |
except Exception as e:
|
240 |
return self._error_state(f"Ingestion Error: {str(e)}")
|
241 |
|
242 |
+
def retrieve_documents(self, state: AgentState) -> Dict:
|
243 |
try:
|
244 |
+
query = state["context"]["raw_query"]
|
245 |
+
docs = retriever.retrieve(query, "research")
|
246 |
return {
|
247 |
+
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
|
248 |
+
"context": {
|
249 |
+
"documents": docs,
|
250 |
+
"retrieval_time": time.time()
|
251 |
+
}
|
252 |
}
|
253 |
except Exception as e:
|
254 |
return self._error_state(f"Retrieval Error: {str(e)}")
|
255 |
|
256 |
+
def analyze_content(self, state: AgentState) -> Dict:
|
257 |
try:
|
258 |
+
docs = "\n\n".join([d.page_content for d in state["context"]["documents"]])
|
259 |
+
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
|
|
|
|
|
|
|
260 |
response = self.processor.process_query(prompt)
|
261 |
|
262 |
if "error" in response:
|
263 |
+
return self._error_state(response["error"])
|
|
|
|
|
|
|
264 |
|
265 |
+
return {
|
266 |
+
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
|
267 |
+
"context": {"analysis": response}
|
268 |
+
}
|
269 |
except Exception as e:
|
270 |
return self._error_state(f"Analysis Error: {str(e)}")
|
271 |
|
272 |
+
def validate_output(self, state: AgentState) -> Dict:
|
273 |
+
analysis = state["messages"][-1].content
|
274 |
+
validation_prompt = f"""Validate research analysis:
|
275 |
+
{analysis}
|
276 |
+
|
277 |
+
Check for:
|
278 |
+
1. Technical accuracy
|
279 |
+
2. Citation support
|
280 |
+
3. Logical consistency
|
281 |
+
4. Methodological soundness
|
282 |
+
|
283 |
+
Respond with 'VALID' or 'INVALID'"""
|
284 |
|
285 |
response = self.processor.process_query(validation_prompt)
|
|
|
286 |
return {
|
287 |
+
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
|
|
|
288 |
}
|
289 |
|
290 |
+
def refine_results(self, state: AgentState) -> Dict:
|
291 |
+
refinement_prompt = f"""Refine this analysis:
|
292 |
+
{state["messages"][-1].content}
|
293 |
+
|
294 |
+
Improve:
|
295 |
+
1. Technical precision
|
296 |
+
2. Empirical grounding
|
297 |
+
3. Theoretical coherence"""
|
298 |
|
299 |
response = self.processor.process_query(refinement_prompt)
|
300 |
+
return {
|
301 |
+
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
|
302 |
+
"context": state["context"]
|
303 |
+
}
|
304 |
|
305 |
def _quality_check(self, state: AgentState) -> str:
|
306 |
+
content = state["messages"][-1].content
|
307 |
+
return "valid" if "VALID" in content else "invalid"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
def _error_state(self, message: str) -> Dict:
|
310 |
return {
|
|
|
314 |
}
|
315 |
|
316 |
# ------------------------------
|
317 |
+
# Research Interface
|
318 |
# ------------------------------
|
319 |
class ResearchInterface:
|
320 |
def __init__(self):
|
321 |
self.workflow = ResearchWorkflow()
|
322 |
+
self._initialize_interface()
|
323 |
|
324 |
+
def _initialize_interface(self):
|
325 |
st.set_page_config(
|
326 |
+
page_title="NeuroResearch AI",
|
327 |
layout="wide",
|
328 |
initial_sidebar_state="expanded"
|
329 |
)
|
330 |
self._inject_styles()
|
331 |
self._build_sidebar()
|
332 |
+
self._build_main_interface()
|
333 |
|
334 |
def _inject_styles(self):
|
335 |
st.markdown("""
|
|
|
338 |
--primary: #2ecc71;
|
339 |
--secondary: #3498db;
|
340 |
--background: #0a0a0a;
|
341 |
+
--text: #ecf0f1;
|
342 |
}
|
343 |
+
|
344 |
.stApp {
|
345 |
background: var(--background);
|
346 |
+
color: var(--text);
|
347 |
+
font-family: 'Roboto', sans-serif;
|
348 |
}
|
349 |
+
|
350 |
.stTextArea textarea {
|
351 |
background: #1a1a1a !important;
|
352 |
+
color: var(--text) !important;
|
353 |
+
border: 2px solid var(--secondary);
|
354 |
+
border-radius: 8px;
|
355 |
+
padding: 1rem;
|
356 |
}
|
357 |
+
|
358 |
+
.stButton>button {
|
359 |
+
background: linear-gradient(135deg, var(--primary), var(--secondary));
|
360 |
+
border: none;
|
361 |
+
border-radius: 8px;
|
362 |
+
padding: 1rem 2rem;
|
363 |
+
transition: all 0.3s;
|
364 |
+
}
|
365 |
+
|
366 |
+
.stButton>button:hover {
|
367 |
+
transform: translateY(-2px);
|
368 |
+
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
|
369 |
+
}
|
370 |
+
|
371 |
+
.stExpander {
|
372 |
+
background: #1a1a1a;
|
373 |
+
border: 1px solid #2a2a2a;
|
374 |
+
border-radius: 8px;
|
375 |
+
margin: 1rem 0;
|
376 |
}
|
377 |
</style>
|
378 |
""", unsafe_allow_html=True)
|
379 |
|
380 |
def _build_sidebar(self):
|
381 |
with st.sidebar:
|
382 |
+
st.title("π Research Database")
|
383 |
+
st.subheader("Technical Papers")
|
384 |
+
for title, short in ResearchConfig.DOCUMENT_MAP.items():
|
385 |
+
with st.expander(short):
|
386 |
+
st.markdown(f"```\n{title}\n```")
|
387 |
+
|
388 |
+
st.subheader("Analysis Metrics")
|
389 |
+
st.metric("Vector Collections", 2)
|
390 |
+
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
391 |
+
|
392 |
+
def _build_main_interface(self):
|
393 |
+
st.title("π§ NeuroResearch AI")
|
394 |
+
query = st.text_area("Research Query:", height=200,
|
395 |
+
placeholder="Enter technical research question...")
|
396 |
|
397 |
+
if st.button("Execute Analysis", type="primary"):
|
398 |
self._execute_analysis(query)
|
399 |
|
400 |
def _execute_analysis(self, query: str):
|
401 |
try:
|
402 |
+
with st.spinner("Initializing Quantum Analysis..."):
|
403 |
+
results = self.workflow.app.stream(
|
404 |
+
{"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
|
405 |
)
|
406 |
|
407 |
+
for event in results:
|
408 |
+
self._render_event(event)
|
409 |
+
|
410 |
+
st.success("β
Analysis Completed Successfully")
|
411 |
except Exception as e:
|
412 |
+
st.error(f"""**Analysis Failed**
|
413 |
+
{str(e)}
|
414 |
+
Potential issues:
|
415 |
+
- Complex query structure
|
416 |
+
- Document correlation failure
|
417 |
+
- Temporal processing constraints""")
|
418 |
+
|
419 |
+
def _render_event(self, event: Dict):
|
420 |
+
if 'ingest' in event:
|
421 |
+
with st.container():
|
422 |
+
st.success("β
Query Ingested")
|
423 |
+
|
424 |
+
elif 'retrieve' in event:
|
425 |
+
with st.container():
|
426 |
+
docs = event['retrieve']['context']['documents']
|
427 |
+
st.info(f"π Retrieved {len(docs)} documents")
|
428 |
+
with st.expander("View Retrieved Documents", expanded=False):
|
429 |
+
for i, doc in enumerate(docs, 1):
|
430 |
+
st.markdown(f"**Document {i}**")
|
431 |
+
st.code(doc.page_content, language='text')
|
432 |
+
|
433 |
+
elif 'analyze' in event:
|
434 |
+
with st.container():
|
435 |
+
content = event['analyze']['messages'][0].content
|
436 |
+
with st.expander("Technical Analysis Report", expanded=True):
|
437 |
+
st.markdown(content)
|
438 |
+
|
439 |
+
elif 'validate' in event:
|
440 |
+
with st.container():
|
441 |
+
content = event['validate']['messages'][0].content
|
442 |
+
if "VALID" in content:
|
443 |
+
st.success("β
Validation Passed")
|
444 |
+
with st.expander("View Validated Analysis", expanded=True):
|
445 |
+
st.markdown(content.split("Validation:")[0])
|
446 |
+
else:
|
447 |
+
st.warning("β οΈ Validation Issues Detected")
|
448 |
+
with st.expander("View Validation Details", expanded=True):
|
449 |
+
st.markdown(content)
|
450 |
|
451 |
if __name__ == "__main__":
|
452 |
ResearchInterface()
|