Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# ------------------------------
|
2 |
-
#
|
3 |
# ------------------------------
|
4 |
import logging
|
5 |
import os
|
@@ -11,6 +11,7 @@ import sys
|
|
11 |
from datetime import datetime
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
from typing import List, Dict, Any, Optional, Sequence
|
|
|
14 |
import chromadb
|
15 |
import requests
|
16 |
import streamlit as st
|
@@ -50,46 +51,49 @@ class AgentState(TypedDict):
|
|
50 |
# Configuration
|
51 |
# ------------------------------
|
52 |
class ResearchConfig:
|
|
|
|
|
|
|
|
|
53 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
54 |
CHROMA_PATH = "chroma_db"
|
55 |
CHUNK_SIZE = 512
|
56 |
CHUNK_OVERLAP = 64
|
57 |
MAX_CONCURRENT_REQUESTS = 5
|
58 |
EMBEDDING_DIMENSIONS = 1536
|
|
|
59 |
DOCUMENT_MAP = {
|
60 |
-
"Research
|
61 |
-
|
62 |
-
"
|
63 |
-
"Transformer Architecture Analysis",
|
64 |
-
"Latest Trends in Machine Learning Methods Using Quantum Computing":
|
65 |
-
"Quantum ML Frontiers"
|
66 |
}
|
67 |
ANALYSIS_TEMPLATE = (
|
68 |
-
"Analyze
|
69 |
-
"
|
70 |
-
"1. Key
|
71 |
"2. Novel Methodologies\n"
|
72 |
"3. Empirical Results (with metrics)\n"
|
73 |
"4. Potential Applications\n"
|
74 |
"5. Limitations & Future Directions\n\n"
|
75 |
-
"Format
|
76 |
)
|
77 |
|
78 |
if not ResearchConfig.DEEPSEEK_API_KEY:
|
79 |
st.error(
|
80 |
"""**Research Portal Configuration Required**
|
81 |
-
1. Obtain DeepSeek API key
|
82 |
-
2.
|
83 |
-
3. Rebuild deployment"""
|
84 |
)
|
85 |
st.stop()
|
86 |
|
87 |
# ------------------------------
|
88 |
-
#
|
89 |
# ------------------------------
|
90 |
-
class
|
91 |
"""
|
92 |
-
Manages creation of
|
|
|
93 |
"""
|
94 |
def __init__(self) -> None:
|
95 |
try:
|
@@ -98,6 +102,7 @@ class QuantumDocumentManager:
|
|
98 |
except Exception as e:
|
99 |
logger.error(f"Error initializing PersistentClient: {e}")
|
100 |
self.client = chromadb.Client() # Fallback to in-memory client
|
|
|
101 |
self.embeddings = OpenAIEmbeddings(
|
102 |
model="text-embedding-3-large",
|
103 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
@@ -105,7 +110,7 @@ class QuantumDocumentManager:
|
|
105 |
|
106 |
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
|
107 |
"""
|
108 |
-
Splits documents into chunks and stores them
|
109 |
"""
|
110 |
splitter = RecursiveCharacterTextSplitter(
|
111 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
@@ -129,22 +134,23 @@ class QuantumDocumentManager:
|
|
129 |
|
130 |
def _document_id(self, content: str) -> str:
|
131 |
"""
|
132 |
-
Generates a unique document ID using SHA256
|
133 |
"""
|
134 |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
135 |
|
136 |
-
# Initialize document collections
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
"
|
141 |
-
"
|
|
|
142 |
], "research")
|
143 |
|
144 |
-
development_docs =
|
145 |
-
"Project
|
146 |
-
"
|
147 |
-
"
|
148 |
], "development")
|
149 |
|
150 |
# ------------------------------
|
@@ -152,7 +158,8 @@ development_docs = qdm.create_collection([
|
|
152 |
# ------------------------------
|
153 |
class ResearchRetriever:
|
154 |
"""
|
155 |
-
Provides retrieval methods for
|
|
|
156 |
"""
|
157 |
def __init__(self) -> None:
|
158 |
try:
|
@@ -171,7 +178,7 @@ class ResearchRetriever:
|
|
171 |
|
172 |
def retrieve(self, query: str, domain: str) -> List[Any]:
|
173 |
"""
|
174 |
-
Retrieves documents
|
175 |
"""
|
176 |
try:
|
177 |
if domain == "research":
|
@@ -179,8 +186,8 @@ class ResearchRetriever:
|
|
179 |
elif domain == "development":
|
180 |
return self.development_retriever.invoke(query)
|
181 |
else:
|
182 |
-
logger.warning(f"Domain '{domain}' not recognized.")
|
183 |
-
return
|
184 |
except Exception as e:
|
185 |
logger.error(f"Retrieval error for domain '{domain}': {e}")
|
186 |
return []
|
@@ -192,8 +199,8 @@ retriever = ResearchRetriever()
|
|
192 |
# ------------------------------
|
193 |
class CognitiveProcessor:
|
194 |
"""
|
195 |
-
Executes API requests to the DeepSeek backend using
|
196 |
-
|
197 |
"""
|
198 |
def __init__(self) -> None:
|
199 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
@@ -204,7 +211,7 @@ class CognitiveProcessor:
|
|
204 |
Processes a query by sending multiple API requests in parallel.
|
205 |
"""
|
206 |
futures = []
|
207 |
-
for _ in range(3): # Triple redundancy for reliability
|
208 |
futures.append(self.executor.submit(self._execute_api_request, prompt))
|
209 |
|
210 |
results = []
|
@@ -230,7 +237,7 @@ class CognitiveProcessor:
|
|
230 |
"model": "deepseek-chat",
|
231 |
"messages": [{
|
232 |
"role": "user",
|
233 |
-
"content": f"Respond as Senior
|
234 |
}],
|
235 |
"temperature": 0.7,
|
236 |
"max_tokens": 1500,
|
@@ -252,7 +259,7 @@ class CognitiveProcessor:
|
|
252 |
|
253 |
def _consensus_check(self, results: List[Dict]) -> Dict:
|
254 |
"""
|
255 |
-
Consolidates multiple API responses
|
256 |
"""
|
257 |
valid_results = [r for r in results if "error" not in r]
|
258 |
if not valid_results:
|
@@ -265,7 +272,8 @@ class CognitiveProcessor:
|
|
265 |
# ------------------------------
|
266 |
class ResearchWorkflow:
|
267 |
"""
|
268 |
-
Defines
|
|
|
269 |
"""
|
270 |
def __init__(self) -> None:
|
271 |
self.processor = CognitiveProcessor()
|
@@ -274,13 +282,13 @@ class ResearchWorkflow:
|
|
274 |
self.app = self.workflow.compile()
|
275 |
|
276 |
def _build_workflow(self) -> None:
|
277 |
-
# Define nodes
|
278 |
self.workflow.add_node("ingest", self.ingest_query)
|
279 |
self.workflow.add_node("retrieve", self.retrieve_documents)
|
280 |
self.workflow.add_node("analyze", self.analyze_content)
|
281 |
self.workflow.add_node("validate", self.validate_output)
|
282 |
self.workflow.add_node("refine", self.refine_results)
|
283 |
-
# Set entry point and
|
284 |
self.workflow.set_entry_point("ingest")
|
285 |
self.workflow.add_edge("ingest", "retrieve")
|
286 |
self.workflow.add_edge("retrieve", "analyze")
|
@@ -298,7 +306,6 @@ class ResearchWorkflow:
|
|
298 |
"""
|
299 |
try:
|
300 |
query = state["messages"][-1].content
|
301 |
-
# Initialize context with raw query and refinement counter
|
302 |
new_context = {"raw_query": query, "refine_count": 0}
|
303 |
logger.info("Query ingested.")
|
304 |
return {
|
@@ -311,7 +318,7 @@ class ResearchWorkflow:
|
|
311 |
|
312 |
def retrieve_documents(self, state: AgentState) -> Dict:
|
313 |
"""
|
314 |
-
Retrieves research documents
|
315 |
"""
|
316 |
try:
|
317 |
query = state["context"]["raw_query"]
|
@@ -326,7 +333,7 @@ class ResearchWorkflow:
|
|
326 |
|
327 |
def analyze_content(self, state: AgentState) -> Dict:
|
328 |
"""
|
329 |
-
Analyzes the retrieved documents using the DeepSeek API.
|
330 |
"""
|
331 |
try:
|
332 |
docs = state["context"].get("documents", [])
|
@@ -345,13 +352,13 @@ class ResearchWorkflow:
|
|
345 |
|
346 |
def validate_output(self, state: AgentState) -> Dict:
|
347 |
"""
|
348 |
-
Validates the technical
|
349 |
"""
|
350 |
analysis = state["messages"][-1].content
|
351 |
validation_prompt = (
|
352 |
-
f"Validate research analysis:\n{analysis}\n\n"
|
353 |
-
"Check for:\n1. Technical accuracy\n2.
|
354 |
-
"Respond with 'VALID' or 'INVALID'"
|
355 |
)
|
356 |
response = self.processor.process_query(validation_prompt)
|
357 |
logger.info("Output validation completed.")
|
@@ -362,14 +369,14 @@ class ResearchWorkflow:
|
|
362 |
def refine_results(self, state: AgentState) -> Dict:
|
363 |
"""
|
364 |
Refines the analysis report if validation fails.
|
365 |
-
Increments the refinement counter to
|
366 |
"""
|
367 |
current_count = state["context"].get("refine_count", 0)
|
368 |
state["context"]["refine_count"] = current_count + 1
|
369 |
logger.info(f"Refinement iteration: {state['context']['refine_count']}")
|
370 |
refinement_prompt = (
|
371 |
f"Refine this analysis:\n{state['messages'][-1].content}\n\n"
|
372 |
-
"Improve
|
373 |
)
|
374 |
response = self.processor.process_query(refinement_prompt)
|
375 |
logger.info("Refinement completed.")
|
@@ -381,7 +388,7 @@ class ResearchWorkflow:
|
|
381 |
def _quality_check(self, state: AgentState) -> str:
|
382 |
"""
|
383 |
Checks whether the analysis report is valid.
|
384 |
-
Forces a valid state if the refinement
|
385 |
"""
|
386 |
refine_count = state["context"].get("refine_count", 0)
|
387 |
if refine_count >= 3:
|
@@ -408,7 +415,8 @@ class ResearchWorkflow:
|
|
408 |
# ------------------------------
|
409 |
class ResearchInterface:
|
410 |
"""
|
411 |
-
Provides
|
|
|
412 |
"""
|
413 |
def __init__(self) -> None:
|
414 |
self.workflow = ResearchWorkflow()
|
@@ -416,7 +424,7 @@ class ResearchInterface:
|
|
416 |
|
417 |
def _initialize_interface(self) -> None:
|
418 |
st.set_page_config(
|
419 |
-
page_title="
|
420 |
layout="wide",
|
421 |
initial_sidebar_state="expanded"
|
422 |
)
|
@@ -471,7 +479,8 @@ class ResearchInterface:
|
|
471 |
def _build_sidebar(self) -> None:
|
472 |
with st.sidebar:
|
473 |
st.title("🔍 Research Database")
|
474 |
-
st.subheader("
|
|
|
475 |
for title, short in ResearchConfig.DOCUMENT_MAP.items():
|
476 |
with st.expander(short):
|
477 |
st.markdown(f"```\n{title}\n```")
|
@@ -480,19 +489,19 @@ class ResearchInterface:
|
|
480 |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
481 |
|
482 |
def _build_main_interface(self) -> None:
|
483 |
-
st.title("🧠
|
484 |
query = st.text_area(
|
485 |
"Research Query:",
|
486 |
height=200,
|
487 |
-
placeholder="Enter
|
488 |
)
|
489 |
if st.button("Execute Analysis", type="primary"):
|
490 |
self._execute_analysis(query)
|
491 |
|
492 |
def _execute_analysis(self, query: str) -> None:
|
493 |
try:
|
494 |
-
with st.spinner("Initializing
|
495 |
-
#
|
496 |
results = self.workflow.app.stream({
|
497 |
"messages": [HumanMessage(content=query)],
|
498 |
"context": {},
|
@@ -527,7 +536,7 @@ Potential issues:
|
|
527 |
elif 'analyze' in event:
|
528 |
with st.container():
|
529 |
content = event['analyze']['messages'][0].content
|
530 |
-
with st.expander("
|
531 |
st.markdown(content)
|
532 |
elif 'validate' in event:
|
533 |
with st.container():
|
|
|
1 |
# ------------------------------
|
2 |
+
# UniversalResearch AI System with Refinement Counter and Increased Recursion Limit
|
3 |
# ------------------------------
|
4 |
import logging
|
5 |
import os
|
|
|
11 |
from datetime import datetime
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
from typing import List, Dict, Any, Optional, Sequence
|
14 |
+
|
15 |
import chromadb
|
16 |
import requests
|
17 |
import streamlit as st
|
|
|
51 |
# Configuration
|
52 |
# ------------------------------
|
53 |
class ResearchConfig:
|
54 |
+
"""
|
55 |
+
Generic configuration for the UniversalResearch AI System.
|
56 |
+
This configuration is designed to be applicable to any research domain.
|
57 |
+
"""
|
58 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
59 |
CHROMA_PATH = "chroma_db"
|
60 |
CHUNK_SIZE = 512
|
61 |
CHUNK_OVERLAP = 64
|
62 |
MAX_CONCURRENT_REQUESTS = 5
|
63 |
EMBEDDING_DIMENSIONS = 1536
|
64 |
+
# An optional map can be used to list pre-loaded or featured research topics.
|
65 |
DOCUMENT_MAP = {
|
66 |
+
"Sample Research Document 1": "Topic A Overview",
|
67 |
+
"Sample Research Document 2": "Topic B Analysis",
|
68 |
+
"Sample Research Document 3": "Topic C Innovations"
|
|
|
|
|
|
|
69 |
}
|
70 |
ANALYSIS_TEMPLATE = (
|
71 |
+
"Analyze the following research documents with scientific rigor:\n{context}\n\n"
|
72 |
+
"Provide your analysis with the following structure:\n"
|
73 |
+
"1. Key Contributions (bullet points)\n"
|
74 |
"2. Novel Methodologies\n"
|
75 |
"3. Empirical Results (with metrics)\n"
|
76 |
"4. Potential Applications\n"
|
77 |
"5. Limitations & Future Directions\n\n"
|
78 |
+
"Format your response in Markdown with LaTeX mathematical notation where applicable."
|
79 |
)
|
80 |
|
81 |
if not ResearchConfig.DEEPSEEK_API_KEY:
|
82 |
st.error(
|
83 |
"""**Research Portal Configuration Required**
|
84 |
+
1. Obtain your DeepSeek API key from [platform.deepseek.com](https://platform.deepseek.com/)
|
85 |
+
2. Set the secret: `DEEPSEEK_API_KEY` in your deployment settings
|
86 |
+
3. Rebuild your deployment."""
|
87 |
)
|
88 |
st.stop()
|
89 |
|
90 |
# ------------------------------
|
91 |
+
# Universal Document Processing
|
92 |
# ------------------------------
|
93 |
+
class UniversalDocumentManager:
|
94 |
"""
|
95 |
+
Manages the creation of document collections for any research domain.
|
96 |
+
Documents are split into manageable chunks and embedded using OpenAI embeddings.
|
97 |
"""
|
98 |
def __init__(self) -> None:
|
99 |
try:
|
|
|
102 |
except Exception as e:
|
103 |
logger.error(f"Error initializing PersistentClient: {e}")
|
104 |
self.client = chromadb.Client() # Fallback to in-memory client
|
105 |
+
|
106 |
self.embeddings = OpenAIEmbeddings(
|
107 |
model="text-embedding-3-large",
|
108 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
|
|
110 |
|
111 |
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
|
112 |
"""
|
113 |
+
Splits documents into chunks and stores them in a Chroma collection.
|
114 |
"""
|
115 |
splitter = RecursiveCharacterTextSplitter(
|
116 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
|
|
134 |
|
135 |
def _document_id(self, content: str) -> str:
|
136 |
"""
|
137 |
+
Generates a unique document ID using a SHA256 hash combined with the current timestamp.
|
138 |
"""
|
139 |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
140 |
|
141 |
+
# Initialize document collections for multiple research domains
|
142 |
+
udm = UniversalDocumentManager()
|
143 |
+
# Example collections – these can be updated with any research domain documents.
|
144 |
+
research_docs = udm.create_collection([
|
145 |
+
"Research Report: Novel AI Techniques in Renewable Energy",
|
146 |
+
"Academic Paper: Advances in Quantum Computing for Data Analysis",
|
147 |
+
"Survey: Emerging Trends in Biomedical Research"
|
148 |
], "research")
|
149 |
|
150 |
+
development_docs = udm.create_collection([
|
151 |
+
"Project Update: New Algorithms in Software Engineering",
|
152 |
+
"Development Report: Innovations in User Interface Design",
|
153 |
+
"Case Study: Agile Methodologies in Large-Scale Software Projects"
|
154 |
], "development")
|
155 |
|
156 |
# ------------------------------
|
|
|
158 |
# ------------------------------
|
159 |
class ResearchRetriever:
|
160 |
"""
|
161 |
+
Provides retrieval methods for research documents.
|
162 |
+
This class supports multiple domains, such as academic research and development.
|
163 |
"""
|
164 |
def __init__(self) -> None:
|
165 |
try:
|
|
|
178 |
|
179 |
def retrieve(self, query: str, domain: str) -> List[Any]:
|
180 |
"""
|
181 |
+
Retrieves documents for a given query and domain.
|
182 |
"""
|
183 |
try:
|
184 |
if domain == "research":
|
|
|
186 |
elif domain == "development":
|
187 |
return self.development_retriever.invoke(query)
|
188 |
else:
|
189 |
+
logger.warning(f"Domain '{domain}' not recognized. Defaulting to research.")
|
190 |
+
return self.research_retriever.invoke(query)
|
191 |
except Exception as e:
|
192 |
logger.error(f"Retrieval error for domain '{domain}': {e}")
|
193 |
return []
|
|
|
199 |
# ------------------------------
|
200 |
class CognitiveProcessor:
|
201 |
"""
|
202 |
+
Executes API requests to the DeepSeek backend using redundant parallel requests.
|
203 |
+
The responses are consolidated via a consensus mechanism.
|
204 |
"""
|
205 |
def __init__(self) -> None:
|
206 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
|
|
211 |
Processes a query by sending multiple API requests in parallel.
|
212 |
"""
|
213 |
futures = []
|
214 |
+
for _ in range(3): # Triple redundancy for improved reliability
|
215 |
futures.append(self.executor.submit(self._execute_api_request, prompt))
|
216 |
|
217 |
results = []
|
|
|
237 |
"model": "deepseek-chat",
|
238 |
"messages": [{
|
239 |
"role": "user",
|
240 |
+
"content": f"Respond as a Senior Researcher:\n{prompt}"
|
241 |
}],
|
242 |
"temperature": 0.7,
|
243 |
"max_tokens": 1500,
|
|
|
259 |
|
260 |
def _consensus_check(self, results: List[Dict]) -> Dict:
|
261 |
"""
|
262 |
+
Consolidates multiple API responses by selecting the one with the most content.
|
263 |
"""
|
264 |
valid_results = [r for r in results if "error" not in r]
|
265 |
if not valid_results:
|
|
|
272 |
# ------------------------------
|
273 |
class ResearchWorkflow:
|
274 |
"""
|
275 |
+
Defines a multi-step research workflow using a state graph.
|
276 |
+
This workflow is designed to be domain-agnostic, working for any research area.
|
277 |
"""
|
278 |
def __init__(self) -> None:
|
279 |
self.processor = CognitiveProcessor()
|
|
|
282 |
self.app = self.workflow.compile()
|
283 |
|
284 |
def _build_workflow(self) -> None:
|
285 |
+
# Define workflow nodes
|
286 |
self.workflow.add_node("ingest", self.ingest_query)
|
287 |
self.workflow.add_node("retrieve", self.retrieve_documents)
|
288 |
self.workflow.add_node("analyze", self.analyze_content)
|
289 |
self.workflow.add_node("validate", self.validate_output)
|
290 |
self.workflow.add_node("refine", self.refine_results)
|
291 |
+
# Set entry point and define transitions
|
292 |
self.workflow.set_entry_point("ingest")
|
293 |
self.workflow.add_edge("ingest", "retrieve")
|
294 |
self.workflow.add_edge("retrieve", "analyze")
|
|
|
306 |
"""
|
307 |
try:
|
308 |
query = state["messages"][-1].content
|
|
|
309 |
new_context = {"raw_query": query, "refine_count": 0}
|
310 |
logger.info("Query ingested.")
|
311 |
return {
|
|
|
318 |
|
319 |
def retrieve_documents(self, state: AgentState) -> Dict:
|
320 |
"""
|
321 |
+
Retrieves research documents for the given query.
|
322 |
"""
|
323 |
try:
|
324 |
query = state["context"]["raw_query"]
|
|
|
333 |
|
334 |
def analyze_content(self, state: AgentState) -> Dict:
|
335 |
"""
|
336 |
+
Analyzes the retrieved research documents using the DeepSeek API.
|
337 |
"""
|
338 |
try:
|
339 |
docs = state["context"].get("documents", [])
|
|
|
352 |
|
353 |
def validate_output(self, state: AgentState) -> Dict:
|
354 |
"""
|
355 |
+
Validates the analysis report for technical accuracy and consistency.
|
356 |
"""
|
357 |
analysis = state["messages"][-1].content
|
358 |
validation_prompt = (
|
359 |
+
f"Validate the following research analysis:\n{analysis}\n\n"
|
360 |
+
"Check for:\n1. Technical accuracy\n2. Adequate citation support\n3. Logical consistency\n4. Methodological soundness\n\n"
|
361 |
+
"Respond with 'VALID' or 'INVALID'."
|
362 |
)
|
363 |
response = self.processor.process_query(validation_prompt)
|
364 |
logger.info("Output validation completed.")
|
|
|
369 |
def refine_results(self, state: AgentState) -> Dict:
|
370 |
"""
|
371 |
Refines the analysis report if validation fails.
|
372 |
+
Increments the refinement counter to avoid infinite loops.
|
373 |
"""
|
374 |
current_count = state["context"].get("refine_count", 0)
|
375 |
state["context"]["refine_count"] = current_count + 1
|
376 |
logger.info(f"Refinement iteration: {state['context']['refine_count']}")
|
377 |
refinement_prompt = (
|
378 |
f"Refine this analysis:\n{state['messages'][-1].content}\n\n"
|
379 |
+
"Improve by enhancing technical precision, empirical grounding, and theoretical coherence."
|
380 |
)
|
381 |
response = self.processor.process_query(refinement_prompt)
|
382 |
logger.info("Refinement completed.")
|
|
|
388 |
def _quality_check(self, state: AgentState) -> str:
|
389 |
"""
|
390 |
Checks whether the analysis report is valid.
|
391 |
+
Forces a valid state if the refinement counter exceeds a preset threshold.
|
392 |
"""
|
393 |
refine_count = state["context"].get("refine_count", 0)
|
394 |
if refine_count >= 3:
|
|
|
415 |
# ------------------------------
|
416 |
class ResearchInterface:
|
417 |
"""
|
418 |
+
Provides a Streamlit-based interface for executing the UniversalResearch AI workflow.
|
419 |
+
The interface is domain-agnostic, making it suitable for research in any field.
|
420 |
"""
|
421 |
def __init__(self) -> None:
|
422 |
self.workflow = ResearchWorkflow()
|
|
|
424 |
|
425 |
def _initialize_interface(self) -> None:
|
426 |
st.set_page_config(
|
427 |
+
page_title="UniversalResearch AI",
|
428 |
layout="wide",
|
429 |
initial_sidebar_state="expanded"
|
430 |
)
|
|
|
479 |
def _build_sidebar(self) -> None:
|
480 |
with st.sidebar:
|
481 |
st.title("🔍 Research Database")
|
482 |
+
st.subheader("Featured Research Topics")
|
483 |
+
# Display featured research topics from the DOCUMENT_MAP.
|
484 |
for title, short in ResearchConfig.DOCUMENT_MAP.items():
|
485 |
with st.expander(short):
|
486 |
st.markdown(f"```\n{title}\n```")
|
|
|
489 |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
490 |
|
491 |
def _build_main_interface(self) -> None:
|
492 |
+
st.title("🧠 UniversalResearch AI")
|
493 |
query = st.text_area(
|
494 |
"Research Query:",
|
495 |
height=200,
|
496 |
+
placeholder="Enter a research question or topic from any domain..."
|
497 |
)
|
498 |
if st.button("Execute Analysis", type="primary"):
|
499 |
self._execute_analysis(query)
|
500 |
|
501 |
def _execute_analysis(self, query: str) -> None:
|
502 |
try:
|
503 |
+
with st.spinner("Initializing Universal Analysis..."):
|
504 |
+
# Invoke the workflow with an increased recursion limit configuration.
|
505 |
results = self.workflow.app.stream({
|
506 |
"messages": [HumanMessage(content=query)],
|
507 |
"context": {},
|
|
|
536 |
elif 'analyze' in event:
|
537 |
with st.container():
|
538 |
content = event['analyze']['messages'][0].content
|
539 |
+
with st.expander("Research Analysis Report", expanded=True):
|
540 |
st.markdown(content)
|
541 |
elif 'validate' in event:
|
542 |
with st.container():
|