Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
TextIteratorStreamer,
|
7 |
+
)
|
8 |
+
import threading
|
9 |
+
import time
|
10 |
+
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
# 1. MODEL LOADING
|
13 |
+
# -----------------------------------------------------------------------------
|
14 |
+
# In this advanced example, we'll instantiate the model directly (instead of using pipeline).
|
15 |
+
# We'll do streaming outputs via TextIteratorStreamer.
|
16 |
+
|
17 |
+
MODEL_NAME = "microsoft/phi-4" # Replace with an actual HF model if phi-4 is unavailable
|
18 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
try:
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
23 |
+
except:
|
24 |
+
# Fallback if model is not found or large. Here we default to a smaller model
|
25 |
+
MODEL_NAME = "gpt2"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(DEVICE)
|
28 |
+
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
|
32 |
+
# -----------------------------------------------------------------------------
|
33 |
+
# 2. CONVERSATION / PROMPTS
|
34 |
+
# -----------------------------------------------------------------------------
|
35 |
+
# We'll keep track of conversation using a list of dictionaries:
|
36 |
+
# [
|
37 |
+
# {"role": "system", "content": "..."},
|
38 |
+
# {"role": "developer", "content": "..."},
|
39 |
+
# {"role": "user", "content": "User message"},
|
40 |
+
# {"role": "assistant", "content": "Assistant answer"},
|
41 |
+
# ...
|
42 |
+
# ]
|
43 |
+
#
|
44 |
+
# We’ll also build in a mock retrieval system that merges knowledge snippets
|
45 |
+
# into the final prompt if the user chooses to do so.
|
46 |
+
|
47 |
+
DEFAULT_SYSTEM_PROMPT = (
|
48 |
+
"You are Philos, an advanced AI system created by ACC (Algorithmic Computer-generated Consciousness). "
|
49 |
+
"Answer user queries accurately, thoroughly, and helpfully. Keep your responses relevant and correct."
|
50 |
+
)
|
51 |
+
|
52 |
+
DEFAULT_DEVELOPER_PROMPT = (
|
53 |
+
"Ensure that you respond in a style that is professional, clear, and approachable. "
|
54 |
+
"Include reasoning steps if needed, but keep them concise."
|
55 |
+
)
|
56 |
+
|
57 |
+
# A small dictionary to emulate knowledge retrieval
|
58 |
+
# In real scenarios, you might use an actual vector DB + retrieval method
|
59 |
+
MOCK_KB = {
|
60 |
+
"python": "Python is a high-level, interpreted programming language famous for its readability and flexibility.",
|
61 |
+
"accelerate library": "The accelerate library by HF helps in distributed training and inference.",
|
62 |
+
"phi-4 architecture": "phi-4 is a 14B-parameter, decoder-only Transformer with a 16K context window.",
|
63 |
+
}
|
64 |
+
|
65 |
+
def retrieve_knowledge(user_query):
|
66 |
+
# Simple naive approach: check keywords in user query
|
67 |
+
# Return a knowledge snippet if found
|
68 |
+
matches = []
|
69 |
+
for keyword, snippet in MOCK_KB.items():
|
70 |
+
if keyword.lower() in user_query.lower():
|
71 |
+
matches.append(snippet)
|
72 |
+
return matches
|
73 |
+
|
74 |
+
# -----------------------------------------------------------------------------
|
75 |
+
# 3. HELPER: Build the prompt from conversation
|
76 |
+
# -----------------------------------------------------------------------------
|
77 |
+
def build_prompt(conversation):
|
78 |
+
"""
|
79 |
+
Convert conversation (list of role/content dicts) into a single text prompt
|
80 |
+
that the model can process. We adopt a simple format:
|
81 |
+
system, developer, user, assistant, ...
|
82 |
+
"""
|
83 |
+
prompt = ""
|
84 |
+
for msg in conversation:
|
85 |
+
if msg["role"] == "system":
|
86 |
+
prompt += f"[System]\n{msg['content']}\n"
|
87 |
+
elif msg["role"] == "developer":
|
88 |
+
prompt += f"[Developer]\n{msg['content']}\n"
|
89 |
+
elif msg["role"] == "user":
|
90 |
+
prompt += f"[User]\n{msg['content']}\n"
|
91 |
+
else: # assistant
|
92 |
+
prompt += f"[Assistant]\n{msg['content']}\n"
|
93 |
+
prompt += "[Assistant]\n" # We end with an assistant role so model can continue
|
94 |
+
return prompt
|
95 |
+
|
96 |
+
|
97 |
+
# -----------------------------------------------------------------------------
|
98 |
+
# 4. STREAMING GENERATION
|
99 |
+
# -----------------------------------------------------------------------------
|
100 |
+
def generate_tokens_stream(prompt, temperature=0.7, top_p=0.9, max_new_tokens=128):
|
101 |
+
"""
|
102 |
+
Uses TextIteratorStreamer to yield tokens one by one (or in small chunks).
|
103 |
+
"""
|
104 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
105 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(DEVICE)
|
106 |
+
|
107 |
+
generation_kwargs = dict(
|
108 |
+
input_ids=input_ids,
|
109 |
+
streamer=streamer,
|
110 |
+
max_new_tokens=max_new_tokens,
|
111 |
+
temperature=temperature,
|
112 |
+
top_p=top_p,
|
113 |
+
do_sample=True,
|
114 |
+
pad_token_id=tokenizer.eos_token_id,
|
115 |
+
)
|
116 |
+
|
117 |
+
# We'll run generation in a background thread, streaming tokens
|
118 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
119 |
+
thread.start()
|
120 |
+
|
121 |
+
# Stream tokens
|
122 |
+
partial_text = ""
|
123 |
+
for new_token in streamer:
|
124 |
+
partial_text += new_token
|
125 |
+
yield partial_text
|
126 |
+
|
127 |
+
thread.join()
|
128 |
+
|
129 |
+
|
130 |
+
# -----------------------------------------------------------------------------
|
131 |
+
# 5. MAIN CHAT FUNCTION
|
132 |
+
# -----------------------------------------------------------------------------
|
133 |
+
def advanced_chat(user_msg, conversation, system_prompt, dev_prompt, retrieve_flg, temperature, top_p):
|
134 |
+
"""
|
135 |
+
- Update conversation with the user's message
|
136 |
+
- Optionally retrieve knowledge and incorporate into the system or developer prompt
|
137 |
+
- Build the final prompt
|
138 |
+
- Stream the assistant's reply
|
139 |
+
"""
|
140 |
+
# If user message is empty
|
141 |
+
if not user_msg.strip():
|
142 |
+
yield "Please enter a message."
|
143 |
+
return
|
144 |
+
|
145 |
+
# 1) Construct or update system/dev prompts
|
146 |
+
system_message = {"role": "system", "content": system_prompt}
|
147 |
+
developer_message = {"role": "developer", "content": dev_prompt}
|
148 |
+
|
149 |
+
# 2) Insert or replace system/dev in the conversation
|
150 |
+
# We'll assume the first system/dev messages are at the start of conversation
|
151 |
+
# or add them if not present
|
152 |
+
filtered = [msg for msg in conversation if msg["role"] not in ["system", "developer"]]
|
153 |
+
conversation = [system_message, developer_message] + filtered
|
154 |
+
|
155 |
+
# 3) Append user's message
|
156 |
+
conversation.append({"role": "user", "content": user_msg})
|
157 |
+
|
158 |
+
# 4) Retrieve knowledge if user toggled "Include knowledge retrieval"
|
159 |
+
if retrieve_flg:
|
160 |
+
knowledge_snippets = retrieve_knowledge(user_msg)
|
161 |
+
if knowledge_snippets:
|
162 |
+
# We can just append them to developer or system content for simplicity
|
163 |
+
knowledge_text = "\n".join(["[Knowledge] " + s for s in knowledge_snippets])
|
164 |
+
conversation[1]["content"] += f"\n\n[Additional Knowledge]\n{knowledge_text}"
|
165 |
+
|
166 |
+
# 5) Build final prompt
|
167 |
+
prompt = build_prompt(conversation)
|
168 |
+
|
169 |
+
# 6) Stream the assistant’s response
|
170 |
+
partial_response = ""
|
171 |
+
for partial_text in generate_tokens_stream(prompt, temperature, top_p):
|
172 |
+
partial_response = partial_text
|
173 |
+
yield partial_text # Send partial tokens to Gradio for display
|
174 |
+
|
175 |
+
# 7) Now that generation is complete, append final assistant message
|
176 |
+
conversation.append({"role": "assistant", "content": partial_response})
|
177 |
+
|
178 |
+
|
179 |
+
# -----------------------------------------------------------------------------
|
180 |
+
# 6. BUILD GRADIO INTERFACE
|
181 |
+
# -----------------------------------------------------------------------------
|
182 |
+
def build_ui():
|
183 |
+
with gr.Blocks(title="PhilosBeta-Advanced", css="#chatbot{height:550px} .overflow-y-auto{max-height:550px}") as demo:
|
184 |
+
|
185 |
+
gr.Markdown("# **PhilosBeta: Advanced Demo**")
|
186 |
+
gr.Markdown(
|
187 |
+
"An example of multi-turn conversation with streaming responses, "
|
188 |
+
"optional retrieval, and custom system/developer prompts."
|
189 |
+
)
|
190 |
+
|
191 |
+
# State to store the conversation as a list of role/content dicts
|
192 |
+
conversation_state = gr.State([])
|
193 |
+
|
194 |
+
# TEXT ELEMENTS
|
195 |
+
with gr.Row():
|
196 |
+
with gr.Column():
|
197 |
+
system_prompt_box = gr.Textbox(
|
198 |
+
label="System Prompt",
|
199 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
200 |
+
lines=3
|
201 |
+
)
|
202 |
+
developer_prompt_box = gr.Textbox(
|
203 |
+
label="Developer Prompt",
|
204 |
+
value=DEFAULT_DEVELOPER_PROMPT,
|
205 |
+
lines=3
|
206 |
+
)
|
207 |
+
with gr.Column():
|
208 |
+
retrieve_flag = gr.Checkbox(label="Include Knowledge Retrieval", value=False)
|
209 |
+
temperature_slider = gr.Slider(0.0, 2.0, 0.7, step=0.1, label="Temperature")
|
210 |
+
top_p_slider = gr.Slider(0.0, 1.0, 0.9, step=0.05, label="Top-p")
|
211 |
+
max_tokens_info = gr.Markdown("Max new tokens = 128 (fixed in code).")
|
212 |
+
|
213 |
+
# MAIN CHAT UI
|
214 |
+
chatbox = gr.Chatbot(label="Philos Conversation", elem_id="chatbot").style(height=500)
|
215 |
+
user_input = gr.Textbox(
|
216 |
+
label="Your Message",
|
217 |
+
placeholder="Type here...",
|
218 |
+
lines=3
|
219 |
+
)
|
220 |
+
send_btn = gr.Button("Send", variant="primary")
|
221 |
+
|
222 |
+
# ---------------------------------------------------------------------
|
223 |
+
# ACTION: Handle user input
|
224 |
+
# ---------------------------------------------------------------------
|
225 |
+
def user_send(
|
226 |
+
user_text, conversation, sys_prompt, dev_prompt, retrieve_flg, temperature, top_p
|
227 |
+
):
|
228 |
+
"""
|
229 |
+
This function calls advanced_chat() and streams tokens back to update the Chatbot UI.
|
230 |
+
"""
|
231 |
+
# We'll create a generator to update the Chatbot in real-time
|
232 |
+
message_stream = advanced_chat(
|
233 |
+
user_msg=user_text,
|
234 |
+
conversation=conversation,
|
235 |
+
system_prompt=sys_prompt,
|
236 |
+
dev_prompt=dev_prompt,
|
237 |
+
retrieve_flg=retrieve_flg,
|
238 |
+
temperature=temperature,
|
239 |
+
top_p=top_p
|
240 |
+
)
|
241 |
+
return message_stream, conversation
|
242 |
+
|
243 |
+
# Gradio can handle generator outputs for streaming.
|
244 |
+
# We map the streamed tokens to the Chatbot component in real-time.
|
245 |
+
chatbox_stream = gr.Chatbot.update()
|
246 |
+
send_btn.click(
|
247 |
+
fn=user_send,
|
248 |
+
inputs=[
|
249 |
+
user_input,
|
250 |
+
conversation_state,
|
251 |
+
system_prompt_box,
|
252 |
+
developer_prompt_box,
|
253 |
+
retrieve_flag,
|
254 |
+
temperature_slider,
|
255 |
+
top_p_slider,
|
256 |
+
],
|
257 |
+
outputs=[chatbox_stream, conversation_state],
|
258 |
+
)
|
259 |
+
|
260 |
+
# We also let the user press Enter to send messages
|
261 |
+
user_input.submit(
|
262 |
+
fn=user_send,
|
263 |
+
inputs=[
|
264 |
+
user_input,
|
265 |
+
conversation_state,
|
266 |
+
system_prompt_box,
|
267 |
+
developer_prompt_box,
|
268 |
+
retrieve_flag,
|
269 |
+
temperature_slider,
|
270 |
+
top_p_slider,
|
271 |
+
],
|
272 |
+
outputs=[chatbox_stream, conversation_state],
|
273 |
+
)
|
274 |
+
|
275 |
+
return demo
|
276 |
+
|
277 |
+
|
278 |
+
# -----------------------------------------------------------------------------
|
279 |
+
# 7. LAUNCH
|
280 |
+
# -----------------------------------------------------------------------------
|
281 |
+
if __name__ == "__main__":
|
282 |
+
ui = build_ui()
|
283 |
+
ui.launch()
|