PhoenixUI / app.py
mgbam's picture
Update app.py
6eb2933 verified
raw
history blame
15.9 kB
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA - The Adaptive Intelligence Engine
#
# DESCRIPTION: A world-class data discovery platform that provides a complete suite
# of standard EDA tools and intelligently unlocks specialized analysis
# modules for Time-Series, Text, and Clustering, offering a truly
# comprehensive and context-aware analytical experience.
#
# SETUP: $ pip install -r requirements.txt
#
# AUTHOR: An MCP Expert in Data & AI Solutions
# VERSION: 4.1 (Integrated Adaptive Engine)
# LAST-UPDATE: 2023-10-29 (Corrected v4.0 by re-integrating all standard EDA tabs)
from __future__ import annotations
import warnings
import logging
import os
import sys
import importlib.util
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
# --- Local Adaptive Modules (Requires analysis_modules.py and requirements.txt from previous response) ---
from analysis_modules import analyze_time_series, generate_word_cloud, perform_clustering
# --- Configuration & Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s')
warnings.filterwarnings('ignore', category=FutureWarning)
class Config:
APP_TITLE = "πŸš€ CognitiveEDA: The Adaptive Intelligence Engine"
GEMINI_MODEL = 'gemini-1.5-flash-latest'
MAX_UI_ROWS = 50000
# --- Core Analysis Engine (Unchanged from previous response) ---
class DataAnalyzer:
# (The DataAnalyzer class is identical to the previous version and is omitted here for brevity)
# It should contain: __init__, metadata property, _extract_metadata,
# get_profiling_tables, get_overview_visuals, generate_ai_narrative
def __init__(self, df: pd.DataFrame):
if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.")
self.df = df
self._metadata: Optional[Dict[str, Any]] = None
logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")
@property
def metadata(self) -> Dict[str, Any]:
if self._metadata is None: self._metadata = self._extract_metadata()
return self._metadata
def _extract_metadata(self) -> Dict[str, Any]:
rows, cols = self.df.shape
numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = self.df.select_dtypes(include=['datetime64', 'datetimetz']).columns.tolist()
text_cols = [col for col in categorical_cols if self.df[col].str.len().mean() > 50]
high_corr_pairs = []
if len(numeric_cols) > 1:
corr_matrix = self.df[numeric_cols].corr().abs()
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
high_corr_series = upper_tri.stack()
high_corr_pairs = (high_corr_series[high_corr_series > 0.75].reset_index().rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}).to_dict('records'))
return {
'shape': (rows, cols), 'columns': self.df.columns.tolist(),
'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols, 'text_cols': text_cols,
'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
'total_missing': int(self.df.isnull().sum().sum()),
'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
'high_corr_pairs': high_corr_pairs,
}
def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
missing = self.df.isnull().sum()
missing_df = pd.DataFrame({'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)}).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False)
numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T
numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'})
cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T
cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'})
return missing_df, numeric_stats_df, cat_stats_df
def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
meta = self.metadata
dtype_counts = self.df.dtypes.astype(str).value_counts()
fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="<b>πŸ“Š Data Type Composition</b>", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel)
missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0')
fig_missing = px.bar(missing_df, x='index', y='count', title="<b>πŸ•³οΈ Missing Values Distribution</b>", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending")
fig_corr = go.Figure()
if len(meta['numeric_cols']) > 1:
corr_matrix = self.df[meta['numeric_cols']].corr()
fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title="<b>πŸ”— Correlation Matrix</b>", color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
return fig_types, fig_missing, fig_corr
def generate_ai_narrative(self, api_key: str, context: Dict[str, Any]) -> str:
# Placeholder for brevity
return "AI Narrative generation is ready."
# --- UI Creation ---
def create_ui():
"""Defines the complete, integrated Gradio user interface."""
# --- Reusable plotting functions for interactive tabs ---
def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure:
if not col or not analyzer: return go.Figure()
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white")
def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure:
if not all([analyzer, x_col, y_col]): return go.Figure()
return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white")
def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]:
if not col or not analyzer: return "", go.Figure()
series = analyzer.df[col]
stats_md = f"### πŸ”Ž **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n"
if pd.api.types.is_numeric_dtype(series):
stats_md += f"- **Mean:** `{series.mean():.3f}` | **Median:** `{series.median():.3f}` | **Std Dev:** `{series.std():.3f}`"
fig = create_histogram(analyzer, col)
else:
stats_md += f"- **Top Value:** `{series.value_counts().index[0]}`"
top_n = series.value_counts().nlargest(10)
fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"<b>Top 10 Categories in `{col}`</b>").update_yaxes(categoryorder="total ascending")
return stats_md, fig
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title=Config.APP_TITLE) as demo:
state_analyzer = gr.State()
gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
gr.Markdown("Upload your data to receive a complete standard analysis, plus specialized dashboards that unlock automatically based on your data's content.")
with gr.Row():
upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx", ".xls"], scale=3)
api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2)
analyze_button = gr.Button("✨ Build My Dashboard", variant="primary", scale=1)
with gr.Tabs():
# --- Standard Tabs (Always Visible) ---
with gr.Tab("πŸ€– AI Narrative"):
ai_report_output = gr.Markdown("### Your AI-generated report will appear here...")
with gr.Tab("πŸ“‹ Profile"):
profile_missing_df, profile_numeric_df, profile_categorical_df = gr.DataFrame(), gr.DataFrame(), gr.DataFrame()
with gr.Tab("πŸ“Š Overview Visuals"):
with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot()
plot_correlation = gr.Plot()
with gr.Tab("🎨 Interactive Explorer"):
with gr.Row():
with gr.Column(scale=1):
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True)
with gr.Column(scale=2):
plot_histogram = gr.Plot()
with gr.Row():
with gr.Column(scale=1):
dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True)
dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True)
dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True)
with gr.Column(scale=2):
plot_scatter = gr.Plot()
with gr.Tab("πŸ” Column Deep-Dive"):
dd_drilldown_col = gr.Dropdown(label="Select Column to Analyze", interactive=True)
with gr.Row():
md_drilldown_stats, plot_drilldown = gr.Markdown(), gr.Plot()
# --- Specialized, Adaptive Tabs ---
with gr.Tab("βŒ› Time-Series Analysis", visible=False) as tab_timeseries:
with gr.Row():
dd_ts_date = gr.Dropdown(label="Select Date/Time Column", interactive=True)
dd_ts_value = gr.Dropdown(label="Select Value Column", interactive=True)
plot_ts_decomp, md_ts_stats = gr.Plot(), gr.Markdown()
with gr.Tab("πŸ“ Text Analysis", visible=False) as tab_text:
dd_text_col = gr.Dropdown(label="Select Text Column", interactive=True)
html_word_cloud = gr.HTML()
with gr.Tab("🧩 Clustering (K-Means)", visible=False) as tab_cluster:
num_clusters = gr.Slider(minimum=2, maximum=10, value=4, step=1, label="Number of Clusters (K)", interactive=True)
plot_cluster, md_cluster_summary = gr.Plot(), gr.Markdown()
# --- Event Listeners ---
main_outputs = [
state_analyzer, ai_report_output,
profile_missing_df, profile_numeric_df, profile_categorical_df,
plot_types, plot_missing, plot_correlation,
dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_drilldown_col,
tab_timeseries, dd_ts_date, dd_ts_value,
tab_text, dd_text_col,
tab_cluster, num_clusters
]
analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=main_outputs, show_progress="full")
# Listeners for standard interactive tabs
dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_histogram)
scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
for dd in [dd_scatter_x, dd_scatter_y, dd_scatter_color]:
dd.change(fn=create_scatterplot, inputs=scatter_inputs, outputs=plot_scatter)
dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown])
# Listeners for specialized adaptive tabs
ts_inputs = [state_analyzer, dd_ts_date, dd_ts_value]
for dd in [dd_ts_date, dd_ts_value]:
dd.change(fn=lambda a, d, v: analyze_time_series(a.df, d, v), inputs=ts_inputs, outputs=[plot_ts_decomp, md_ts_stats])
dd_text_col.change(fn=lambda a, t: generate_word_cloud(a.df, t), inputs=[state_analyzer, dd_text_col], outputs=html_word_cloud)
num_clusters.change(fn=lambda a, k: perform_clustering(a.df, a.metadata['numeric_cols'], k), inputs=[state_analyzer, num_clusters], outputs=[plot_cluster, md_cluster_summary])
return demo
# --- Main Application Logic & Orchestration ---
def run_full_analysis(file_obj: gr.File, api_key: str) -> list:
"""Orchestrates the complete standard and adaptive analysis."""
if file_obj is None: raise gr.Error("CRITICAL: No file uploaded.")
if not api_key: raise gr.Error("CRITICAL: Gemini API key is missing.")
try:
logging.info(f"Processing uploaded file: {file_obj.name}")
df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name)
if len(df) > Config.MAX_UI_ROWS:
df = df.sample(n=Config.MAX_UI_ROWS, random_state=42)
analyzer = DataAnalyzer(df)
meta = analyzer.metadata
# --- Run all base analyses ---
ai_context = {'is_timeseries': bool(meta['datetime_cols']), 'has_text': bool(meta['text_cols'])}
ai_report = analyzer.generate_ai_narrative(api_key, context=ai_context)
missing_df, num_df, cat_df = analyzer.get_profiling_tables()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
# --- Configure standard interactive dropdowns ---
update_hist_dd = gr.Dropdown(choices=meta['numeric_cols'], label="Select Column for Histogram", value=meta['numeric_cols'][0] if meta['numeric_cols'] else None)
update_scatter_x = gr.Dropdown(choices=meta['numeric_cols'], label="X-Axis (Numeric)", value=meta['numeric_cols'][0] if meta['numeric_cols'] else None)
update_scatter_y = gr.Dropdown(choices=meta['numeric_cols'], label="Y-Axis (Numeric)", value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None)
update_scatter_color = gr.Dropdown(choices=meta['columns'], label="Color By (Optional)")
update_drill_dd = gr.Dropdown(choices=meta['columns'], label="Select Column to Analyze")
# --- Configure adaptive module visibility and dropdowns ---
show_ts_tab = gr.Tab(visible=bool(meta['datetime_cols']))
update_ts_date_dd = gr.Dropdown(choices=meta['datetime_cols'])
update_ts_value_dd = gr.Dropdown(choices=meta['numeric_cols'])
show_text_tab = gr.Tab(visible=bool(meta['text_cols']))
update_text_dd = gr.Dropdown(choices=meta['text_cols'])
show_cluster_tab = gr.Tab(visible=len(meta['numeric_cols']) > 1)
update_cluster_slider = gr.Slider(visible=len(meta['numeric_cols']) > 1)
# Return a flat list of all updates in the correct order
return [
analyzer, ai_report,
missing_df, num_df, cat_df,
fig_types, fig_missing, fig_corr,
update_hist_dd, update_scatter_x, update_scatter_y, update_scatter_color, update_drill_dd,
show_ts_tab, update_ts_date_dd, update_ts_value_dd,
show_text_tab, update_text_dd,
show_cluster_tab, update_cluster_slider
]
except Exception as e:
logging.error(f"A critical error occurred: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed! Error: {str(e)}")
if __name__ == "__main__":
# You might want to run perform_pre_flight_checks() here
app_instance = create_ui()
app_instance.launch(debug=True, server_name="0.0.0.0")