PhoenixUI / analysis_modules.py
mgbam's picture
Update analysis_modules.py
7fa4e3f verified
raw
history blame
5.2 kB
# analysis_modules.py
import base64
import io
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
from wordcloud import WordCloud
# --- Time-Series Module ---
def analyze_time_series(df: pd.DataFrame, date_col: str, value_col: str):
"""Performs time-series decomposition and stationarity testing."""
if not date_col or not value_col:
return go.Figure(), "Please select both a date/time column and a value column."
try:
# Prepare data
ts_df = df.copy()
ts_df[date_col] = pd.to_datetime(ts_df[date_col])
ts_df = ts_df.set_index(date_col).sort_index()
ts_data = ts_df[value_col].dropna()
if len(ts_data) < 24: # Need at least 2 periods for decomposition
return go.Figure(), "Not enough data points (< 24) for time-series decomposition."
# Decomposition (assuming monthly data for period=12)
result = seasonal_decompose(ts_data, model='additive', period=12)
fig_decomp = px.line(
pd.DataFrame({'Trend': result.trend, 'Seasonal': result.seasonal, 'Residual': result.resid}),
title=f"<b>Time-Series Decomposition of '{value_col}'</b>",
labels={'value': 'Value', 'index': 'Date'},
template="plotly_white",
)
fig_decomp.update_layout(legend_title_text='Components')
# Stationarity Test (ADF)
adf_result = adfuller(ts_data)
conclusion = 'likely **stationary** (p < 0.05)' if adf_result[1] < 0.05 else 'likely **non-stationary** (p >= 0.05)'
adf_md = f"""
### Stationarity Analysis (ADF Test)
- **ADF Statistic:** `{adf_result[0]:.4f}`
- **p-value:** `{adf_result[1]:.4f}`
- **Conclusion:** The time-series is {conclusion}. A non-stationary series may require differencing for forecasting models.
"""
return fig_decomp, adf_md
except Exception as e:
logging.error(f"Time-series analysis failed: {e}", exc_info=True)
return go.Figure(), f"❌ **Error:** Could not perform time-series analysis. Reason: {e}"
# --- Text Analysis Module ---
def generate_word_cloud(df: pd.DataFrame, text_col: str):
"""Generates a word cloud from a text column and returns it as a data URI."""
if not text_col:
return None # Return None to hide the HTML component
try:
text = ' '.join(df[text_col].dropna().astype(str))
if not text:
return "<p style='text-align:center;'>No text data available in this column to generate a cloud.</p>"
wordcloud = WordCloud(width=800, height=400, background_color='white', colormap='viridis').generate(text)
# Convert matplotlib plot to a base64 encoded string for Gradio HTML
buf = io.BytesIO()
wordcloud.to_image().save(buf, format='png')
img_str = base64.b64encode(buf.getvalue()).decode('utf-8')
html_content = f'<div style="text-align:center;"><img src="data:image/png;base64,{img_str}" alt="Word Cloud"></div>'
return html_content
except Exception as e:
logging.error(f"Word cloud generation failed: {e}", exc_info=True)
return f"❌ **Error:** Could not generate word cloud. Reason: {e}"
# --- Clustering Module ---
def perform_clustering(df: pd.DataFrame, numeric_cols: list, n_clusters: int = 4):
"""Performs K-Means clustering and returns a scatter plot."""
if len(numeric_cols) < 2:
return go.Figure(), "Clustering requires at least 2 numeric features."
try:
cluster_data = df[numeric_cols].dropna()
if len(cluster_data) < n_clusters:
return go.Figure(), f"Not enough data points ({len(cluster_data)}) for {n_clusters} clusters."
# Scale data for better clustering performance
scaler = StandardScaler()
scaled_data = scaler.fit_transform(cluster_data)
kmeans = KMeans(n_clusters=int(n_clusters), random_state=42, n_init='auto').fit(scaled_data)
cluster_data['Cluster'] = kmeans.labels_.astype(str)
# Visualize using the first two principal components for a more holistic view
fig_cluster = px.scatter(
cluster_data, x=numeric_cols[0], y=numeric_cols[1], color='Cluster',
title=f"<b>K-Means Clustering Result (k={int(n_clusters)})</b>",
template="plotly_white", color_discrete_sequence=px.colors.qualitative.Vivid
)
cluster_md = f"""
### Clustering Summary
- **Features Used:** {', '.join(numeric_cols)}
- **Number of Clusters (K):** {int(n_clusters)}
- **Insight:** The plot shows the separation of data into {int(n_clusters)} distinct groups based on the selected features.
"""
return fig_cluster, cluster_md
except Exception as e:
logging.error(f"Clustering failed: {e}", exc_info=True)
return go.Figure(), f"❌ **Error:** Could not perform clustering. Reason: {e}"