|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
from plotly.subplots import make_subplots |
|
import io |
|
import json |
|
import warnings |
|
import google.generativeai as genai |
|
import os |
|
from contextlib import redirect_stdout |
|
|
|
|
|
warnings.filterwarnings('ignore') |
|
CSS = """ |
|
/* --- Phoenix UI Custom CSS --- */ |
|
/* Stat Card Styling */ |
|
.stat-card { |
|
border-radius: 12px !important; |
|
padding: 20px !important; |
|
background: #f7fafc; /* light gray background */ |
|
border: 1px solid #e2e8f0; |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); |
|
text-align: center; |
|
} |
|
.stat-card-title { font-size: 16px; font-weight: 500; color: #4a5568; margin-bottom: 8px; } |
|
.stat-card-value { font-size: 32px; font-weight: 700; color: #2d3748; } |
|
|
|
/* General Layout & Feel */ |
|
.gradio-container { font-family: 'Inter', sans-serif; } |
|
.gr-button { box-shadow: 0 1px 2px 0 rgba(0,0,0,0.05); } |
|
|
|
/* Sidebar Styling */ |
|
.sidebar { |
|
background-color: #f9fafb; |
|
padding: 15px; |
|
border-right: 1px solid #e5e7eb; |
|
min-height: 100vh; |
|
} |
|
.sidebar .gr-button { |
|
width: 100%; |
|
text-align: left !important; |
|
background: none !important; |
|
border: none !important; |
|
box-shadow: none !important; |
|
color: #374151 !important; |
|
font-size: 16px !important; |
|
padding: 12px 10px !important; |
|
margin-bottom: 8px !important; |
|
border-radius: 8px !important; |
|
} |
|
.sidebar .gr-button:hover { background-color: #e5e7eb !important; } |
|
.sidebar .gr-button.selected { background-color: #d1d5db !important; font-weight: 600 !important; } |
|
|
|
/* AI Co-pilot Styling */ |
|
.code-block { border: 1px solid #e5e7eb; border-radius: 8px; } |
|
.explanation-block { background-color: #f0f9ff; border-left: 4px solid #3b82f6; padding: 12px; } |
|
""" |
|
|
|
|
|
def safe_exec(code_string: str, local_vars: dict): |
|
"""Safely execute a string of Python code and capture its output.""" |
|
output_buffer = io.StringIO() |
|
try: |
|
with redirect_stdout(output_buffer): |
|
exec(code_string, globals(), local_vars) |
|
|
|
stdout = output_buffer.getvalue() |
|
fig = local_vars.get('fig') |
|
result_df = local_vars.get('result_df') |
|
return stdout, fig, result_df, None |
|
except Exception as e: |
|
return None, None, None, f"Execution Error: {str(e)}" |
|
|
|
|
|
def load_and_process_file(file_obj, state_dict): |
|
"""Loads a CSV, processes it, and updates the entire UI state.""" |
|
if file_obj is None: |
|
return state_dict, "Please upload a file.", *[gr.update(visible=False)] * 3 |
|
try: |
|
df = pd.read_csv(file_obj.name, low_memory=False) |
|
for col in df.select_dtypes(include=['object']).columns: |
|
try: |
|
df[col] = pd.to_datetime(df[col], errors='raise') |
|
except (ValueError, TypeError): |
|
continue |
|
|
|
metadata = extract_dataset_metadata(df) |
|
state_dict = { |
|
'df': df, |
|
'metadata': metadata, |
|
'filename': os.path.basename(file_obj.name), |
|
'dashboard_plots': [] |
|
} |
|
|
|
status_msg = f"β
**{state_dict['filename']}** loaded successfully." |
|
|
|
|
|
cockpit_update = gr.update(visible=True) |
|
deep_dive_update = gr.update(visible=False) |
|
copilot_update = gr.update(visible=False) |
|
welcome_update = gr.update(visible=False) |
|
|
|
|
|
rows, cols = metadata['shape'] |
|
quality = metadata['data_quality'] |
|
|
|
return (state_dict, status_msg, welcome_update, cockpit_update, deep_dive_update, copilot_update, |
|
gr.update(value=f"{rows:,}"), gr.update(value=cols), gr.update(value=f"{quality}%"), |
|
gr.update(value=f"{len(metadata['datetime_cols'])}"), |
|
gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns'])) |
|
except Exception as e: |
|
return state_dict, f"β **Error:** {e}", *[gr.update()] * 10 |
|
|
|
def extract_dataset_metadata(df: pd.DataFrame): |
|
rows, cols = df.shape |
|
numeric_cols = df.select_dtypes(include=np.number).columns.tolist() |
|
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist() |
|
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist() |
|
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0 |
|
return { |
|
'shape': (rows, cols), 'columns': df.columns.tolist(), |
|
'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols, |
|
'datetime_cols': datetime_cols, 'dtypes': df.dtypes.to_string(), |
|
'head': df.head().to_string(), 'data_quality': data_quality |
|
} |
|
|
|
|
|
def switch_page(page_name): |
|
"""Controls visibility of main content pages.""" |
|
if page_name == "cockpit": |
|
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) |
|
elif page_name == "deep_dive": |
|
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) |
|
elif page_name == "co-pilot": |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) |
|
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) |
|
|
|
|
|
def get_ai_suggestions(state_dict, api_key): |
|
"""Generates proactive analytical suggestions from the AI.""" |
|
if not api_key: return "Enter your Gemini API key to get suggestions.", gr.update(visible=False) |
|
if not state_dict: return "Upload data first.", gr.update(visible=False) |
|
|
|
metadata = state_dict['metadata'] |
|
prompt = f""" |
|
Based on the following dataset metadata, generate 3 to 5 specific, actionable, and interesting analytical questions a user might want to ask. Frame them as questions. |
|
- **Columns:** {', '.join(metadata['columns'])} |
|
- **Numeric:** {', '.join(metadata['numeric_cols'])} |
|
- **Categorical:** {', '.join(metadata['categorical_cols'])} |
|
- **Datetime:** {', '.join(metadata['datetime_cols'])} |
|
|
|
Return ONLY a JSON list of strings. Example: ["What is the trend of sales over time?", "Which category has the highest average price?"] |
|
""" |
|
try: |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-1.5-flash') |
|
response = model.generate_content(prompt) |
|
suggestions = json.loads(response.text) |
|
|
|
|
|
buttons = [gr.Button(s, variant="secondary") for s in suggestions] |
|
return gr.update(visible=False), gr.Accordion(label="β¨ AI Smart Suggestions", open=True, children=buttons) |
|
|
|
except Exception as e: |
|
return f"Could not generate suggestions: {e}", gr.update(visible=False) |
|
|
|
|
|
def add_plot_to_dashboard(state_dict, x_col, y_col, plot_type): |
|
"""Generates a plot and adds it to the state-managed dashboard.""" |
|
if not x_col: return state_dict, gr.update() |
|
|
|
df = state_dict['df'] |
|
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}" |
|
fig = None |
|
|
|
try: |
|
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title) |
|
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title) |
|
elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols") |
|
elif plot_type == 'bar': |
|
counts = df[x_col].value_counts().nlargest(20) |
|
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}") |
|
fig.update_xaxes(title=x_col) |
|
|
|
if fig: |
|
state_dict['dashboard_plots'].append(fig) |
|
|
|
|
|
accordion_children = [gr.Plot(fig, visible=True) for fig in state_dict['dashboard_plots']] |
|
return state_dict, gr.Accordion(label="Your Dashboard Plots", children=accordion_children, open=True) |
|
except Exception as e: |
|
gr.Warning(f"Plotting Error: {e}") |
|
return state_dict, gr.update() |
|
|
|
def clear_dashboard(state_dict): |
|
"""Clears all plots from the dashboard.""" |
|
state_dict['dashboard_plots'] = [] |
|
return state_dict, gr.Accordion(label="Your Dashboard Plots", children=[]) |
|
|
|
|
|
def respond_to_chat(user_message, history, state_dict, api_key): |
|
"""Handles the advanced chat interaction with the AI Co-pilot.""" |
|
if not api_key: |
|
history.append((user_message, "I need a Gemini API key to function. Please provide it in the sidebar.")) |
|
return history, *[gr.update(visible=False)] * 4 |
|
if not state_dict: |
|
history.append((user_message, "Please upload a dataset first.")) |
|
return history, *[gr.update(visible=False)] * 4 |
|
|
|
history.append((user_message, None)) |
|
|
|
metadata = state_dict['metadata'] |
|
prompt = f""" |
|
You are 'Phoenix Co-pilot', an expert AI data analyst. Your goal is to help a user analyze a pandas DataFrame named `df`. |
|
|
|
**Instructions:** |
|
1. Carefully understand the user's question. |
|
2. Formulate a plan (thought process). |
|
3. Write Python code to execute that plan. |
|
4. The code can use pandas (pd), numpy (np), and plotly.express (px). |
|
5. **For plots, assign the figure to a variable `fig` (e.g., `fig = px.histogram(...)`).** |
|
6. **For table-like results, assign the final DataFrame to a variable `result_df` (e.g., `result_df = df.describe()`).** |
|
7. Do not modify the original `df`. Use `df.copy()` if needed. |
|
8. Provide a brief, user-friendly explanation of the result. |
|
9. Respond **ONLY** with a single, raw JSON object with keys: "thought", "code", "explanation". |
|
|
|
**DataFrame Metadata:** |
|
- Columns and dtypes: {metadata['dtypes']} |
|
- First 5 rows: {metadata['head']} |
|
|
|
**User Question:** "{user_message}" |
|
|
|
**Your JSON Response:** |
|
""" |
|
|
|
try: |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-1.5-flash') |
|
response = model.generate_content(prompt) |
|
|
|
response_text = response.text.strip().replace("```json", "").replace("```", "") |
|
response_json = json.loads(response_text) |
|
|
|
thought = response_json.get("thought", "Thinking...") |
|
code_to_run = response_json.get("code", "") |
|
explanation = response_json.get("explanation", "Here is the result.") |
|
|
|
stdout, fig_result, df_result, error = safe_exec(code_to_run, {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np}) |
|
|
|
bot_message = f"π€ **Thought:** *{thought}*" |
|
history[-1] = (user_message, bot_message) |
|
|
|
|
|
output_updates = [gr.update(visible=False, value=None)] * 4 |
|
|
|
if explanation: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** {explanation}") |
|
if code_to_run: output_updates[1] = gr.update(visible=True, value=code_to_run) |
|
if fig_result: output_updates[2] = gr.update(visible=True, value=fig_result) |
|
if df_result is not None: output_updates[3] = gr.update(visible=True, value=df_result) |
|
if stdout: |
|
|
|
new_explanation = (output_updates[0]['value'] if output_updates[0]['value'] else "") + f"\n\n**Console Output:**\n```\n{stdout}\n```" |
|
output_updates[0] = gr.update(visible=True, value=new_explanation) |
|
if error: |
|
error_explanation = f"**Phoenix Co-pilot:** I encountered an error. Here's the details:\n\n`{error}`" |
|
output_updates[0] = gr.update(visible=True, value=error_explanation) |
|
|
|
return history, *output_updates |
|
|
|
except Exception as e: |
|
error_msg = f"A critical error occurred: {e}. The AI may have returned an invalid response. Please try rephrasing your question." |
|
history[-1] = (user_message, error_msg) |
|
return history, *[gr.update(visible=False)] * 4 |
|
|
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks(theme=gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Phoenix AI Data Explorer") as demo: |
|
global_state = gr.State({}) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1, elem_classes="sidebar"): |
|
gr.Markdown("# π Phoenix UI") |
|
gr.Markdown("AI Data Explorer") |
|
|
|
|
|
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected") |
|
deep_dive_btn = gr.Button("π Deep Dive Builder") |
|
copilot_btn = gr.Button("π€ AI Co-pilot") |
|
|
|
gr.Markdown("---") |
|
file_input = gr.File(label="π Upload New CSV", file_types=[".csv"]) |
|
status_output = gr.Markdown("Status: Awaiting data...") |
|
gr.Markdown("---") |
|
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key here...") |
|
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary") |
|
|
|
|
|
with gr.Column(scale=4): |
|
|
|
|
|
with gr.Column(visible=True) as welcome_page: |
|
gr.Markdown("# Welcome to the AI Data Explorer (Phoenix UI)", elem_id="welcome-header") |
|
gr.Markdown("Please **upload a CSV file** and **enter your Gemini API key** in the sidebar to begin.") |
|
gr.Image(value="https://i.imgur.com/gY5wSjV.png", label="Workflow", show_label=False, show_download_button=False, container=False) |
|
|
|
|
|
with gr.Column(visible=False) as cockpit_page: |
|
gr.Markdown("## π Data Cockpit") |
|
with gr.Row(): |
|
with gr.Column(elem_classes="stat-card"): |
|
gr.Markdown("<div class='stat-card-title'>Rows</div>", elem_classes="stat-card-content") |
|
rows_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value") |
|
with gr.Column(elem_classes="stat-card"): |
|
gr.Markdown("<div class='stat-card-title'>Columns</div>", elem_classes="stat-card-content") |
|
cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value") |
|
with gr.Column(elem_classes="stat-card"): |
|
gr.Markdown("<div class='stat-card-title'>Data Quality</div>", elem_classes="stat-card-content") |
|
quality_stat = gr.Textbox("0%", show_label=False, elem_classes="stat-card-value") |
|
with gr.Column(elem_classes="stat-card"): |
|
gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>", elem_classes="stat-card-content") |
|
time_cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value") |
|
|
|
suggestion_status = gr.Markdown(visible=True) |
|
suggestion_accordion = gr.Accordion(label="β¨ AI Smart Suggestions", open=False, visible=False) |
|
|
|
|
|
with gr.Column(visible=False) as deep_dive_page: |
|
gr.Markdown("## π Deep Dive Dashboard Builder") |
|
gr.Markdown("Create a custom dashboard by adding multiple plots to investigate your data.") |
|
with gr.Row(): |
|
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram') |
|
x_col_dd = gr.Dropdown([], label="X-Axis / Column") |
|
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)") |
|
with gr.Row(): |
|
add_plot_btn = gr.Button("Add to Dashboard", variant="primary") |
|
clear_plots_btn = gr.Button("Clear Dashboard") |
|
dashboard_accordion = gr.Accordion(label="Your Dashboard Plots", open=True) |
|
|
|
|
|
with gr.Column(visible=False) as copilot_page: |
|
gr.Markdown("## π€ AI Co-pilot") |
|
gr.Markdown("Ask complex questions in natural language. The Co-pilot will write and execute code to find the answer.") |
|
chatbot = gr.Chatbot(height=400, label="Conversation with Co-pilot") |
|
|
|
|
|
with gr.Accordion("Co-pilot's Response Details", open=True): |
|
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block") |
|
copilot_code = gr.Code(language="python", visible=False, label="Executed Python Code", elem_classes="code-block") |
|
copilot_plot = gr.Plot(visible=False, label="Generated Visualization") |
|
copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True) |
|
|
|
with gr.Row(): |
|
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the correlation between age and salary?'", scale=4) |
|
chat_submit_btn = gr.Button("Submit", variant="primary") |
|
|
|
|
|
|
|
pages = [cockpit_page, deep_dive_page, copilot_page] |
|
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn] |
|
|
|
for i, btn in enumerate(nav_buttons): |
|
btn.click(lambda i=i: (gr.update(visible=i==0), gr.update(visible=i==1), gr.update(visible=i==2)), |
|
outputs=pages).then( |
|
lambda: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], |
|
outputs=nav_buttons) |
|
|
|
|
|
file_input.upload( |
|
fn=load_and_process_file, |
|
inputs=[file_input, global_state], |
|
outputs=[global_state, status_output, welcome_page, cockpit_page, deep_dive_page, copilot_page, |
|
rows_stat, cols_stat, quality_stat, time_cols_stat, |
|
x_col_dd, y_col_dd, copilot_input_col_ref_for_dynamic_update] |
|
).then( |
|
fn=lambda: (gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")), |
|
outputs=nav_buttons |
|
) |
|
|
|
|
|
suggestion_btn.click( |
|
get_ai_suggestions, |
|
[global_state, api_key_input], |
|
[suggestion_status, suggestion_accordion] |
|
).then( |
|
fn=lambda: [gr.Button.update(visible=True) for _ in range(5)], |
|
outputs=[b for b in suggestion_accordion.children] if isinstance(suggestion_accordion, gr.Accordion) and suggestion_accordion.children else [] |
|
) |
|
|
|
if isinstance(suggestion_accordion, gr.Accordion): |
|
for button in suggestion_accordion.children: |
|
button.click( |
|
fn=lambda q=button.value: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), q), |
|
outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input] |
|
).then( |
|
fn=lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), |
|
outputs=nav_buttons |
|
) |
|
|
|
|
|
|
|
add_plot_btn.click(add_plot_to_dashboard, [global_state, x_col_dd, y_col_dd, plot_type_dd], [global_state, dashboard_accordion]) |
|
clear_plots_btn.click(clear_dashboard, [global_state], [global_state, dashboard_accordion]) |
|
|
|
|
|
copilot_input_col_ref_for_dynamic_update = x_col_dd |
|
chat_submit_btn.click( |
|
respond_to_chat, |
|
[chat_input, chatbot, global_state, api_key_input], |
|
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table] |
|
).then(lambda: "", outputs=[chat_input]) |
|
chat_input.submit( |
|
respond_to_chat, |
|
[chat_input, chatbot, global_state, api_key_input], |
|
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table] |
|
).then(lambda: "", outputs=[chat_input]) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
app = create_gradio_interface() |
|
app.launch(debug=True) |