mgbam commited on
Commit
486ca98
·
verified ·
1 Parent(s): 38629d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +242 -220
app.py CHANGED
@@ -2,258 +2,280 @@ import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
  import plotly.express as px
5
- import plotly.graph_objects as go
6
- from plotly.subplots import make_subplots
7
  import io
8
  import json
9
  import warnings
10
  import google.generativeai as genai
11
  import os
12
- from contextlib import redirect_stdout
13
 
14
- # --- Configuration ---
15
  warnings.filterwarnings('ignore')
16
 
17
- # --- Expert-Crafted Dark Theme CSS ---
18
  CSS = """
19
- /* --- Phoenix UI Custom Dark CSS --- */
20
- /* Stat Card Styling */
21
- .stat-card {
22
- border-radius: 12px !important;
23
- padding: 20px !important;
24
- background: #1f2937 !important; /* Dark blue-gray background */
25
- border: 1px solid #374151 !important;
26
- box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
27
- text-align: center;
28
- }
29
  .stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
30
  .stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
 
 
 
 
 
 
31
 
32
- /* General Layout & Feel */
33
- .gradio-container { font-family: 'Inter', sans-serif; }
34
- .gr-button { box-shadow: 0 1px 2px 0 rgba(0,0,0,0.05); }
35
 
36
- /* Sidebar Styling */
37
- .sidebar {
38
- background-color: #111827 !important; /* Very dark blue-gray */
39
- padding: 15px;
40
- border-right: 1px solid #374151 !important;
41
- min-height: 100vh;
42
- }
43
- .sidebar .gr-button {
44
- width: 100%;
45
- text-align: left !important;
46
- background: none !important;
47
- border: none !important;
48
- box-shadow: none !important;
49
- color: #d1d5db !important; /* Light gray text for readability */
50
- font-size: 16px !important;
51
- padding: 12px 10px !important;
52
- margin-bottom: 8px !important;
53
- border-radius: 8px !important;
54
- }
55
- .sidebar .gr-button:hover { background-color: #374151 !important; } /* Hover state */
56
- .sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; } /* Selected state with primary color */
57
 
58
- /* AI Co-pilot Styling */
59
- .code-block { border: 1px solid #374151 !important; border-radius: 8px; }
60
- .explanation-block {
61
- background-color: #1e3a8a !important; /* Dark blue background */
62
- border-left: 4px solid #3b82f6 !important; /* Brighter blue border */
63
- padding: 12px;
64
- color: #e5e7eb !important;
65
- }
66
- """
67
 
68
- # --- Helper and Core Functions (Unchanged) ---
69
- def safe_exec(code_string: str, local_vars: dict):
70
- output_buffer = io.StringIO()
71
- try:
72
- with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
73
- stdout, fig, result_df = output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df')
74
- return stdout, fig, result_df, None
75
- except Exception as e: return None, None, None, f"Execution Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
- def load_and_process_file(file_obj, state_dict):
78
- if file_obj is None: return state_dict, "Please upload a file.", *[gr.update(visible=False)] * 4
79
- try:
80
- df = pd.read_csv(file_obj.name, low_memory=False)
81
- for col in df.select_dtypes(include=['object']).columns:
82
- try: df[col] = pd.to_datetime(df[col], errors='raise')
83
- except (ValueError, TypeError): continue
84
- metadata = extract_dataset_metadata(df)
85
- state_dict = {'df': df, 'metadata': metadata, 'filename': os.path.basename(file_obj.name), 'dashboard_plots': []}
86
- status_msg, welcome_update = f"✅ **{state_dict['filename']}** loaded.", gr.update(visible=False)
87
- rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
88
- return (state_dict, status_msg, welcome_update, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
89
- gr.update(value=f"{rows:,}"), gr.update(value=cols), gr.update(value=f"{quality}%"), gr.update(value=f"{len(metadata['datetime_cols'])}"),
90
- gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']))
91
- except Exception as e: return state_dict, f"❌ **Error:** {e}", *[gr.update()] * 11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
- def extract_dataset_metadata(df: pd.DataFrame):
94
- rows, cols = df.shape
95
- numeric_cols, cat_cols, dt_cols = df.select_dtypes(include=np.number).columns.tolist(), df.select_dtypes(include=['object', 'category']).columns.tolist(), df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
96
- quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
97
- return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': cat_cols,
98
- 'datetime_cols': dt_cols, 'dtypes': df.dtypes.to_string(), 'head': df.head().to_string(), 'data_quality': quality}
 
 
 
 
 
99
 
100
- def switch_page(page_name):
101
- return gr.update(visible=page_name=="cockpit"), gr.update(visible=page_name=="deep_dive"), gr.update(visible=page_name=="co-pilot")
 
 
 
 
 
102
 
103
- def get_ai_suggestions(state_dict, api_key):
104
- if not api_key: return "Enter your Gemini API key...", *[gr.update(visible=False)]*5
105
- if not state_dict: return "Upload data first.", *[gr.update(visible=False)]*5
106
- metadata, prompt = state_dict['metadata'], f"Based on metadata... generate 3-5 questions... Return ONLY JSON list of strings."
107
- try:
108
- genai.configure(api_key=api_key)
109
- model = genai.GenerativeModel('gemini-1.5-flash')
110
- suggestions = json.loads(model.generate_content(prompt).text)
111
- buttons = [gr.Button(s, variant="secondary", visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
112
- return gr.update(visible=False), *buttons
113
- except Exception as e: return f"Could not generate suggestions: {e}", *[gr.update(visible=False)]*5
114
 
115
- def handle_suggestion_click(question_text):
116
- return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question_text
 
 
117
 
118
- def add_plot_to_dashboard(state_dict, x_col, y_col, plot_type):
119
- if not x_col:
120
- gr.Warning("Please select at least an X-axis column.")
121
- return state_dict, state_dict.get('dashboard_plots', [])
122
- df, title = state_dict['df'], f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
123
- try:
124
- if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
125
- elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
126
- elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
127
- elif plot_type == 'bar':
128
- counts = df[x_col].value_counts().nlargest(20)
129
- fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
130
- if fig:
131
- fig.update_layout(template="plotly_dark")
132
- state_dict['dashboard_plots'].append(fig)
133
- return state_dict, state_dict['dashboard_plots']
134
- except Exception as e:
135
- gr.Warning(f"Plotting Error: {e}")
136
- return state_dict, state_dict.get('dashboard_plots', [])
137
 
138
- def clear_dashboard(state_dict):
139
- state_dict['dashboard_plots'] = []
140
- return state_dict, []
141
 
142
- def respond_to_chat(user_message, history, state_dict, api_key):
143
- if not api_key or not state_dict:
144
- msg = "I need a Gemini API key and a dataset to work."
145
- history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
146
- history.append((user_message, None)); metadata = state_dict['metadata']
147
- prompt = f"You are 'Phoenix Co-pilot'... IMPORTANT: add `template='plotly_dark'` to all figures... User Question: '{user_message}'"
148
- try:
149
- genai.configure(api_key=api_key)
150
- response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
151
- thought, code_to_run, explanation = response_json.get("thought", "Thinking..."), response_json.get("code", ""), response_json.get("explanation", "Here is the result.")
152
- stdout, fig_result, df_result, error = safe_exec(code_to_run, {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np})
153
- history[-1] = (user_message, f"🤔 **Thought:** *{thought}*")
154
- output_updates = [gr.update(visible=False, value=None)] * 4
155
- if explanation: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** {explanation}")
156
- if code_to_run: output_updates[1] = gr.update(visible=True, value=code_to_run)
157
- if fig_result: output_updates[2] = gr.update(visible=True, value=fig_result)
158
- if df_result is not None: output_updates[3] = gr.update(visible=True, value=df_result)
159
- if stdout:
160
- new_explanation = (output_updates[0]['value'] if output_updates[0]['visible'] else "") + f"\n\n**Console Output:**\n```\n{stdout}\n```"
161
- output_updates[0] = gr.update(visible=True, value=new_explanation)
162
- if error: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** I encountered an error:\n\n`{error}`")
163
- return history, *output_updates
164
- except Exception as e:
165
- history[-1] = (user_message, f"A critical error occurred: {e}."); return history, *[gr.update(visible=False)]*4
166
 
167
- # --- Gradio UI Definition ---
168
- def create_gradio_interface():
169
- with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Phoenix AI Data Explorer") as demo:
170
- global_state = gr.State({})
 
 
171
 
172
- # "Define-Then-Place" Pattern
173
- # 1. DEFINE all components
174
- # Sidebar
175
- # CORRECTED: Added elem_id for robust navigation
176
- cockpit_btn = gr.Button("📊 Data Cockpit", elem_classes="selected", elem_id="cockpit")
177
- deep_dive_btn = gr.Button("🔍 Deep Dive Builder", elem_id="deep_dive")
178
- copilot_btn = gr.Button("🤖 AI Co-pilot", elem_id="co-pilot")
179
- file_input, status_output = gr.File(label="📁 Upload New CSV", file_types=[".csv"]), gr.Markdown("Status: Awaiting data...")
180
- api_key_input, suggestion_btn = gr.Textbox(label="🔑 Gemini API Key", type="password", placeholder="Enter key..."), gr.Button("Get Smart Suggestions", variant="secondary")
181
-
182
- # Cockpit
183
- rows_stat, cols_stat = gr.Textbox("0", show_label=False, interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", show_label=False, interactive=False, elem_classes="stat-card-value")
184
- quality_stat, time_cols_stat = gr.Textbox("0%", show_label=False, interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", show_label=False, interactive=False, elem_classes="stat-card-value")
185
- suggestion_status, suggestion_buttons = gr.Markdown(visible=True), [gr.Button(visible=False) for _ in range(5)]
186
-
187
- # Deep Dive
188
- plot_type_dd, x_col_dd, y_col_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram'), gr.Dropdown([], label="X-Axis"), gr.Dropdown([], label="Y-Axis")
189
- add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary"), gr.Button("Clear Dashboard")
190
- dashboard_gallery = gr.Gallery(label="📊 Your Custom Dashboard", height="auto", columns=2, preview=True)
191
 
192
- # Co-pilot
193
- chatbot = gr.Chatbot(height=400, label="Conversation with Co-pilot", show_copy_button=True)
194
- copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
195
- copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)
196
- chat_input, chat_submit_btn = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the correlation between age and salary?'", scale=4), gr.Button("Submit", variant="primary")
197
-
198
- # 2. PLACE components into layout
199
- with gr.Row():
200
- with gr.Column(scale=1, elem_classes="sidebar"):
201
- gr.Markdown("## 🚀 Phoenix UI"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
202
- file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
203
- with gr.Column(scale=4):
204
- with gr.Column(visible=True) as welcome_page:
205
- gr.Markdown("# Welcome to the AI Data Explorer (Phoenix UI)\n Please **upload a CSV file** and **enter your Gemini API key** to begin.")
206
- gr.Image(value="workflow.png", show_label=False, show_download_button=False, container=False)
207
- with gr.Column(visible=False) as cockpit_page:
208
- gr.Markdown("## 📊 Data Cockpit")
209
- with gr.Row():
210
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat
211
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat
212
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat
213
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat
214
- suggestion_status;
215
- with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons]
216
- with gr.Column(visible=False) as deep_dive_page:
217
- gr.Markdown("## 🔍 Deep Dive Dashboard Builder"); gr.Markdown("Create a custom dashboard by adding plots to the gallery.")
218
- with gr.Row(): plot_type_dd; x_col_dd; y_col_dd
219
- with gr.Row(): add_plot_btn; clear_plots_btn
220
- dashboard_gallery
221
- with gr.Column(visible=False) as copilot_page:
222
- gr.Markdown("## 🤖 AI Co-pilot"); chatbot
223
- with gr.Accordion("Co-pilot's Response Details", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
224
- with gr.Row(): chat_input; chat_submit_btn
225
 
226
- # 3. DEFINE event handlers
227
- pages = [cockpit_page, deep_dive_page, copilot_page]
228
- nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
229
-
230
- # CORRECTED: Navigation logic is now robust and reliable
231
- for i, btn in enumerate(nav_buttons):
232
- btn.click(lambda id=btn.elem_id: switch_page(id), outputs=pages) \
233
- .then(lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
- file_input.upload(load_and_process_file, [file_input, global_state],
236
- [global_state, status_output, welcome_page, cockpit_page, deep_dive_page, copilot_page,
237
- rows_stat, cols_stat, quality_stat, time_cols_stat, x_col_dd, y_col_dd, plot_type_dd]) \
238
- .then(lambda: switch_page("cockpit"), outputs=pages) \
239
- .then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
 
 
 
 
 
 
 
 
 
 
 
 
 
240
 
241
- suggestion_btn.click(get_ai_suggestions, [global_state, api_key_input], [suggestion_status, *suggestion_buttons])
242
 
243
- for btn in suggestion_buttons:
244
- btn.click(handle_suggestion_click, inputs=[btn], outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]) \
245
- .then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
246
 
247
- add_plot_btn.click(add_plot_to_dashboard, [global_state, x_col_dd, y_col_dd, plot_type_dd], [global_state, dashboard_gallery])
248
- clear_plots_btn.click(clear_dashboard, [global_state], [global_state, dashboard_gallery])
 
 
 
 
 
 
 
249
 
250
- chat_submit_btn.click(respond_to_chat, [chat_input, chatbot, global_state, api_key_input],
251
- [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
252
- chat_input.submit(respond_to_chat, [chat_input, chatbot, global_state, api_key_input],
253
- [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
 
 
 
 
 
254
 
255
- return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256
 
257
  if __name__ == "__main__":
258
- app = create_gradio_interface()
259
- app.launch(debug=True)
 
2
  import pandas as pd
3
  import numpy as np
4
  import plotly.express as px
 
 
5
  import io
6
  import json
7
  import warnings
8
  import google.generativeai as genai
9
  import os
10
+ from typing import List, Dict, Any, Tuple, Optional
11
 
12
+ # --- Configuration & Constants ---
13
  warnings.filterwarnings('ignore')
14
 
 
15
  CSS = """
16
+ /* --- Phoenix UI Professional Dark CSS --- */
17
+ body { --body-background-fill: #111827; }
18
+ .stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
19
+ .stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
 
 
 
 
 
 
20
  .stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
21
  .stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
22
+ .sidebar { background-color: #111827 !important; padding: 15px; border-right: 1px solid #374151 !important; min-height: 100vh; }
23
+ .sidebar .gr-button { width: 100%; text-align: left !important; background: none !important; border: none !important; box-shadow: none !important; color: #d1d5db !important; font-size: 16px !important; padding: 12px 10px !important; margin-bottom: 8px !important; border-radius: 8px !important; transition: background-color 0.2s ease; }
24
+ .sidebar .gr-button:hover { background-color: #374151 !important; }
25
+ .sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; }
26
+ .explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; }
27
+ """
28
 
29
+ class DataExplorerApp:
30
+ """A professional-grade, AI-powered data exploration application."""
 
31
 
32
+ def __init__(self):
33
+ """Initializes the application state and builds the UI."""
34
+ self.state: Dict[str, Any] = {}
35
+ self.demo = self._create_layout()
36
+ self._register_event_handlers()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ def _create_layout(self) -> gr.Blocks:
39
+ """Defines all UI components and arranges them in the layout."""
40
+ with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Professional AI Data Explorer") as demo:
41
+ # --- State Management ---
42
+ self.state_var = gr.State({})
 
 
 
 
43
 
44
+ # --- Component Definition ---
45
+ # Sidebar
46
+ self.cockpit_btn = gr.Button("📊 Data Cockpit", elem_classes="selected", elem_id="cockpit")
47
+ self.deep_dive_btn = gr.Button("🔍 Deep Dive Builder", elem_id="deep_dive")
48
+ self.copilot_btn = gr.Button("🤖 Chief Data Scientist", elem_id="co-pilot")
49
+ self.file_input = gr.File(label="📁 Upload CSV File", file_types=[".csv"])
50
+ self.status_output = gr.Markdown("Status: Awaiting data...")
51
+ self.api_key_input = gr.Textbox(label="🔑 Gemini API Key", type="password", placeholder="Enter key to enable AI...")
52
+ self.suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
53
+
54
+ # Cockpit
55
+ self.rows_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
56
+ self.cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
57
+ self.quality_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value")
58
+ self.time_cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
59
+ self.suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
60
+
61
+ # Deep Dive
62
+ self.plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
63
+ self.x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
64
+ self.y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
65
+ self.add_plot_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False)
66
+ self.clear_plots_btn = gr.Button("Clear Dashboard")
67
+ self.dashboard_gallery = gr.Gallery(label="📊 Your Custom Dashboard", height="auto", columns=2, preview=True)
68
 
69
+ # Co-pilot
70
+ self.chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True)
71
+ self.copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
72
+ self.copilot_code = gr.Code(language="python", visible=False, label="Executed Code")
73
+ self.copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
74
+ self.copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)
75
+ self.chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4)
76
+ self.chat_submit_btn = gr.Button("Ask AI", variant="primary")
77
+
78
+ # --- Layout Arrangement ---
79
+ with gr.Row():
80
+ with gr.Column(scale=1, elem_classes="sidebar"):
81
+ gr.Markdown("## 🚀 AI Explorer Pro")
82
+ self.cockpit_btn; self.deep_dive_btn; self.copilot_btn; gr.Markdown("---")
83
+ self.file_input; self.status_output; gr.Markdown("---"); self.api_key_input; self.suggestion_btn
84
+ with gr.Column(scale=4):
85
+ self.welcome_page = gr.Column(visible=True)
86
+ with self.welcome_page:
87
+ gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
88
+ self.cockpit_page = gr.Column(visible=False)
89
+ with self.cockpit_page:
90
+ gr.Markdown("## 📊 Data Cockpit: At-a-Glance Overview")
91
+ with gr.Row():
92
+ with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); self.rows_stat
93
+ with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); self.cols_stat
94
+ with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); self.quality_stat
95
+ with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); self.time_cols_stat
96
+ with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in self.suggestion_buttons]
97
+ self.deep_dive_page = gr.Column(visible=False)
98
+ with self.deep_dive_page:
99
+ gr.Markdown("## 🔍 Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct your own visualizations to investigate specific relationships.")
100
+ with gr.Row(): self.plot_type_dd; self.x_col_dd; self.y_col_dd
101
+ with gr.Row(): self.add_plot_btn; self.clear_plots_btn
102
+ self.dashboard_gallery
103
+ self.copilot_page = gr.Column(visible=False)
104
+ with self.copilot_page:
105
+ gr.Markdown("## 🤖 Chief Data Scientist: Your AI Partner"); self.chatbot
106
+ with gr.Accordion("AI's Detailed Response", open=True): self.copilot_explanation; self.copilot_code; self.copilot_plot; self.copilot_table
107
+ with gr.Row(): self.chat_input; self.chat_submit_btn
108
+ return demo
109
 
110
+ def _register_event_handlers(self):
111
+ """Connects UI components to their backend logic functions."""
112
+ # Navigation
113
+ nav_buttons = [self.cockpit_btn, self.deep_dive_btn, self.copilot_btn]
114
+ pages = [self.cockpit_page, self.deep_dive_page, self.copilot_page]
115
+ for i, btn in enumerate(nav_buttons):
116
+ btn.click(
117
+ lambda id=btn.elem_id: self._switch_page(id), outputs=pages
118
+ ).then(
119
+ lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons
120
+ )
121
 
122
+ # File Upload
123
+ self.file_input.upload(self.load_and_process_file, inputs=[self.file_input], outputs=[
124
+ self.state_var, self.status_output, self.welcome_page, self.cockpit_page,
125
+ self.rows_stat, self.cols_stat, self.quality_stat, self.time_cols_stat,
126
+ self.x_col_dd, self.y_col_dd, self.add_plot_btn
127
+ ]).then(lambda: self._switch_page("cockpit"), outputs=pages) \
128
+ .then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
129
 
130
+ # API Key Input
131
+ self.api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[self.api_key_input], outputs=[self.suggestion_btn])
 
 
 
 
 
 
 
 
 
132
 
133
+ # Deep Dive Page Logic
134
+ self.plot_type_dd.change(self._update_plot_controls, inputs=[self.plot_type_dd], outputs=[self.y_col_dd])
135
+ self.add_plot_btn.click(self.add_plot_to_dashboard, inputs=[self.state_var, self.x_col_dd, self.y_col_dd, self.plot_type_dd], outputs=[self.state_var, self.dashboard_gallery])
136
+ self.clear_plots_btn.click(self.clear_dashboard, inputs=[self.state_var], outputs=[self.state_var, self.dashboard_gallery])
137
 
138
+ # Co-pilot & Suggestions
139
+ self.suggestion_btn.click(self.get_ai_suggestions, inputs=[self.state_var, self.api_key_input], outputs=self.suggestion_buttons)
140
+ for btn in self.suggestion_buttons:
141
+ btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[self.cockpit_page, self.deep_dive_page, self.copilot_page, self.chat_input]) \
142
+ .then(lambda: self._switch_page("co-pilot"), outputs=pages) \
143
+ .then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
144
+
145
+ self.chat_submit_btn.click(self.respond_to_chat, [self.state_var, self.api_key_input, self.chat_input, self.chatbot], [self.chatbot, self.copilot_explanation, self.copilot_code, self.copilot_plot, self.copilot_table]).then(lambda: "", outputs=[self.chat_input])
146
+ self.chat_input.submit(self.respond_to_chat, [self.state_var, self.api_key_input, self.chat_input, self.chatbot], [self.chatbot, self.copilot_explanation, self.copilot_code, self.copilot_plot, self.copilot_table]).then(lambda: "", outputs=[self.chat_input])
 
 
 
 
 
 
 
 
 
 
147
 
148
+ def launch(self):
149
+ """Launches the Gradio application."""
150
+ self.demo.launch(debug=True)
151
 
152
+ # --- Backend Logic Methods ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
+ def _switch_page(self, page_id: str) -> Tuple[gr.update, ...]:
155
+ return gr.update(visible=page_id=="cockpit"), gr.update(visible=page_id=="deep_dive"), gr.update(visible=page_id=="co-pilot")
156
+
157
+ def _update_plot_controls(self, plot_type: str) -> gr.update:
158
+ is_bivariate = plot_type in ['scatter', 'box']
159
+ return gr.update(visible=is_bivariate)
160
 
161
+ def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
162
+ try:
163
+ df = pd.read_csv(file_obj.name, low_memory=False)
164
+ for col in df.select_dtypes(include=['object']).columns:
165
+ try: df[col] = pd.to_datetime(df[col], errors='raise')
166
+ except (ValueError, TypeError): continue
167
+
168
+ metadata = self._extract_dataset_metadata(df)
169
+ state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
170
+ status_msg = f"✅ **{os.path.basename(file_obj.name)}** loaded."
171
+
172
+ rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
173
+
174
+ return (state, status_msg, gr.update(visible=False), gr.update(visible=True),
175
+ f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
176
+ gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
177
+ except Exception as e:
178
+ gr.Error(f"File Load Error: {e}")
179
+ return {}, f"❌ Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
180
 
181
+ def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
182
+ rows, cols = df.shape
183
+ quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
184
+ return {'shape': (rows, cols), 'columns': df.columns.tolist(),
185
+ 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
186
+ 'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(),
187
+ 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
188
+ 'dtypes_head': df.head().to_string()}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
+ def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: str, plot_type: str) -> Tuple[Dict, List]:
191
+ if not x_col:
192
+ gr.Warning("Please select at least an X-axis column.")
193
+ return state, state.get('dashboard_plots', [])
194
+ df = state['df']
195
+ title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
196
+ try:
197
+ if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
198
+ elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
199
+ elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols", trendline_color_override="red")
200
+ elif plot_type == 'bar':
201
+ counts = df[x_col].value_counts().nlargest(20)
202
+ fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
203
+ if fig:
204
+ fig.update_layout(template="plotly_dark")
205
+ state['dashboard_plots'].append(fig)
206
+ gr.Info(f"Added '{title}' to the dashboard.")
207
+ return state, state['dashboard_plots']
208
+ except Exception as e:
209
+ gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', [])
210
+
211
+ def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]:
212
+ state['dashboard_plots'] = []
213
+ gr.Info("Dashboard cleared.")
214
+ return state, []
215
 
216
+ def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
217
+ if not api_key: gr.Warning("API Key is required for suggestions."); return [gr.update(visible=False)]*5
218
+ if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
219
+ metadata = state['metadata']
220
+ prompt = f"""Based on this metadata (columns: {metadata['columns']}), generate 4 impactful analytical questions. Return ONLY a JSON list of strings."""
221
+ try:
222
+ genai.configure(api_key=api_key)
223
+ suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
224
+ return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
225
+ except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5
226
+
227
+ def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
228
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question
229
+
230
+ def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Tuple[List, ...]:
231
+ if not api_key or not state:
232
+ msg = "I need a Gemini API key and a dataset to work."
233
+ history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
234
 
235
+ history.append((user_message, "Thinking... 🤔")); yield history, *[gr.update(visible=False)]*4
236
 
237
+ metadata = state['metadata']
238
+ prompt = f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
 
239
 
240
+ **Instructions:**
241
+ 1. **Analyze the Request:** Understand the user's intent, even if it's vague.
242
+ 2. **Choose the Best Method:** Decide if the answer is a table (e.g., `df.describe()`), a single value, or a visualization. If a plot is needed, choose the BEST plot type (e.g., 'histogram' for distribution, 'scatter' for two numerics, 'bar' for categorical counts).
243
+ 3. **Formulate a Plan:** Briefly explain your plan of attack.
244
+ 4. **Write Code:** Generate the Python code. Use pandas (`pd`), numpy (`np`), and plotly express (`px`).
245
+ - For plots, assign to `fig` and add `template='plotly_dark'`.
246
+ - For tables, assign the final DataFrame to `result_df`.
247
+ 5. **Provide Insights:** After the result, give a one or two-sentence INSIGHT. What does the result mean? What is the business implication?
248
+ 6. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
249
 
250
+ **DataFrame Metadata:** {metadata['dtypes_head']}
251
+ **User Question:** "{user_message}"
252
+ """
253
+ try:
254
+ genai.configure(api_key=api_key)
255
+ response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
256
+ plan, code_to_run, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
257
+
258
+ stdout, fig_result, df_result, error = self._safe_exec(code_to_run, {'df': state['df'], 'px': px, 'pd': pd, 'np': np})
259
 
260
+ history[-1] = (user_message, f"**Plan:** {plan}")
261
+
262
+ explanation = f"**Insight:** {insight}"
263
+ if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
264
+ if error: gr.Error(f"AI Code Execution Failed: {error}")
265
+
266
+ yield (history, gr.update(visible=bool(explanation)), gr.update(visible=bool(code_to_run), value=code_to_run),
267
+ gr.update(visible=bool(fig_result), value=fig_result), gr.update(visible=bool(df_result is not None), value=df_result))
268
+ except Exception as e:
269
+ history[-1] = (user_message, f"I'm sorry, I encountered an error. Please try rephrasing your question. (Error: {e})")
270
+ yield history, *[gr.update(visible=False)]*4
271
+
272
+ def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
273
+ output_buffer = io.StringIO()
274
+ try:
275
+ with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
276
+ return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
277
+ except Exception as e: return None, None, None, f"Execution Error: {str(e)}"
278
 
279
  if __name__ == "__main__":
280
+ app = DataExplorerApp()
281
+ app.launch()