mgbam commited on
Commit
c08faed
Β·
verified Β·
1 Parent(s): 6a754de

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +486 -0
app.py ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ import plotly.graph_objects as go
6
+ from plotly.subplots import make_subplots
7
+ import io
8
+ from scipy import stats
9
+ import warnings
10
+ import google.generativeai as genai
11
+ import os
12
+ from dotenv import load_dotenv
13
+ import logging
14
+ import json
15
+ from contextlib import redirect_stdout
16
+
17
+ # --- Configuration ---
18
+ warnings.filterwarnings('ignore')
19
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
20
+
21
+ # --- Helper Functions ---
22
+
23
+ def safe_exec(code_string: str, local_vars: dict) -> tuple:
24
+ """Safely execute a string of Python code and capture its output."""
25
+ output_buffer = io.StringIO()
26
+ try:
27
+ with redirect_stdout(output_buffer):
28
+ exec(code_string, globals(), local_vars)
29
+
30
+ stdout_output = output_buffer.getvalue()
31
+ fig = local_vars.get('fig', None)
32
+ return stdout_output, fig, None
33
+ except Exception as e:
34
+ error_message = f"Execution Error: {str(e)}"
35
+ logging.error(f"Error executing AI-generated code: {error_message}")
36
+ return None, None, error_message
37
+
38
+ # --- Core Data Processing ---
39
+
40
+ def load_and_process_file(file_obj, state_dict):
41
+ """Loads a CSV file and performs initial processing, updating the global state."""
42
+ if file_obj is None:
43
+ return None, "Please upload a file.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
44
+
45
+ try:
46
+ df = pd.read_csv(file_obj.name)
47
+
48
+ # Attempt to convert object columns to datetime
49
+ for col in df.select_dtypes(include=['object']).columns:
50
+ try:
51
+ df[col] = pd.to_datetime(df[col], errors='raise')
52
+ logging.info(f"Successfully converted column '{col}' to datetime.")
53
+ except (ValueError, TypeError):
54
+ continue
55
+
56
+ metadata = extract_dataset_metadata(df)
57
+
58
+ state_dict = {
59
+ 'df': df,
60
+ 'metadata': metadata,
61
+ 'filename': os.path.basename(file_obj.name)
62
+ }
63
+
64
+ # Update UI elements dynamically
65
+ update_args = {
66
+ 'choices': metadata['columns'],
67
+ 'value': None,
68
+ 'interactive': True
69
+ }
70
+
71
+ # Check for time series tab visibility
72
+ time_series_visible = len(metadata['datetime_cols']) > 0
73
+
74
+ return (
75
+ state_dict,
76
+ f"βœ… Loaded `{state_dict['filename']}` ({metadata['shape'][0]} rows, {metadata['shape'][1]} cols)",
77
+ gr.update(**update_args), gr.update(**update_args), gr.update(**update_args),
78
+ gr.update(choices=metadata['numeric_cols'], value=None, interactive=True),
79
+ gr.update(choices=metadata['datetime_cols'], value=None, interactive=True),
80
+ gr.update(visible=time_series_visible), # Show/hide Time Series tab
81
+ gr.update(visible=True) # Show Chatbot tab
82
+ )
83
+ except Exception as e:
84
+ logging.error(f"Error loading file: {e}")
85
+ return state_dict, f"❌ Error: {e}", gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=False), gr.update(visible=False)
86
+
87
+ def extract_dataset_metadata(df: pd.DataFrame) -> dict:
88
+ """Extracts comprehensive metadata from a DataFrame."""
89
+ rows, cols = df.shape
90
+ columns = df.columns.tolist()
91
+
92
+ numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
93
+ categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
94
+ datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
95
+
96
+ missing_data = df.isnull().sum()
97
+ data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
98
+
99
+ return {
100
+ 'shape': (rows, cols),
101
+ 'columns': columns,
102
+ 'numeric_cols': numeric_cols,
103
+ 'categorical_cols': categorical_cols,
104
+ 'datetime_cols': datetime_cols,
105
+ 'dtypes': df.dtypes.to_string(),
106
+ 'missing_data': missing_data.to_dict(),
107
+ 'data_quality': data_quality,
108
+ 'head': df.head().to_string()
109
+ }
110
+
111
+ # --- Tab 1: AI Overview ---
112
+
113
+ def analyze_dataset_overview(state_dict, api_key: str):
114
+ """Generates an AI-powered narrative overview of the dataset."""
115
+ if not state_dict:
116
+ return "❌ Please upload a dataset first.", "", 0
117
+ if not api_key:
118
+ return "❌ Please enter your Gemini API key.", "", 0
119
+
120
+ metadata = state_dict['metadata']
121
+
122
+ # Create prompt for Gemini
123
+ prompt = f"""
124
+ You are an expert data analyst and storyteller. Your task is to provide a high-level, engaging overview of a dataset based on its metadata.
125
+
126
+ **Dataset Metadata:**
127
+ - **Shape:** {metadata['shape'][0]} rows, {metadata['shape'][1]} columns
128
+ - **Column Names:** {', '.join(metadata['columns'])}
129
+ - **Numeric Columns:** {', '.join(metadata['numeric_cols'])}
130
+ - **Categorical Columns:** {', '.join(metadata['categorical_cols'])}
131
+ - **Datetime Columns:** {', '.join(metadata['datetime_cols'])}
132
+ - **Data Quality (Non-missing values):** {metadata['data_quality']}%
133
+ - **First 5 rows:**
134
+ {metadata['head']}
135
+
136
+ **Your Task:**
137
+ Based on the metadata, generate a report in Markdown format. Use emojis to make it visually appealing. The report should have the following sections:
138
+
139
+ # πŸš€ AI-Powered Dataset Overview
140
+
141
+ ## πŸ€” What is this dataset likely about?
142
+ (Predict the domain and purpose of the dataset, e.g., "This appears to be customer transaction data for an e-commerce platform.")
143
+
144
+ ## πŸ’‘ Potential Key Questions to Explore
145
+ - (Suggest 3-4 interesting business or research questions the data could answer.)
146
+ - (Example: "Which products are most frequently purchased together?")
147
+
148
+ ## πŸ“Š Potential Analyses & Visualizations
149
+ - (List 3-4 types of analyses that would be valuable.)
150
+ - (Example: "Time series analysis of sales to identify seasonality.")
151
+
152
+ ## ⚠️ Data Quality & Potential Issues
153
+ - (Briefly comment on the data quality score and mention if the presence of datetime columns is a good sign for certain analyses.)
154
+ """
155
+
156
+ try:
157
+ genai.configure(api_key=api_key)
158
+ model = genai.GenerativeModel('gemini-1.5-flash')
159
+ response = model.generate_content(prompt)
160
+ story = response.text
161
+ except Exception as e:
162
+ story = f"## ⚠️ AI Generation Failed\n**Error:** {str(e)}\n\nPlease check your API key and network connection. A fallback analysis is provided below.\n\n" \
163
+ f"### Fallback Analysis\nThis dataset contains **{metadata['shape'][0]}** records and **{metadata['shape'][1]}** features. " \
164
+ f"It includes **{len(metadata['numeric_cols'])}** numeric, **{len(metadata['categorical_cols'])}** categorical, " \
165
+ f"and **{len(metadata['datetime_cols'])}** time-based columns. The overall data quality is **{metadata['data_quality']}%**, " \
166
+ f"which is a good starting point for analysis."
167
+
168
+ # Basic Info Summary
169
+ basic_info = f"""
170
+ πŸ“‹ **File:** `{state_dict.get('filename', 'N/A')}`
171
+ πŸ“Š **Size:** {metadata['shape'][0]:,} rows Γ— {metadata['shape'][1]} columns
172
+ πŸ”’ **Features:**
173
+ β€’ **Numeric:** {len(metadata['numeric_cols'])}
174
+ β€’ **Categorical:** {len(metadata['categorical_cols'])}
175
+ β€’ **DateTime:** {len(metadata['datetime_cols'])}
176
+ 🎯 **Data Quality:** {metadata['data_quality']}%
177
+ """
178
+
179
+ return story, basic_info, metadata['data_quality']
180
+
181
+ # --- Tab 2: Univariate Analysis ---
182
+
183
+ def generate_univariate_plot(column_name, state_dict):
184
+ """Generates plots for a single selected variable."""
185
+ if not column_name or not state_dict:
186
+ return None, "Select a column to analyze."
187
+
188
+ df = state_dict['df']
189
+ metadata = state_dict['metadata']
190
+
191
+ fig = None
192
+ summary = ""
193
+
194
+ if column_name in metadata['numeric_cols']:
195
+ fig = make_subplots(rows=1, cols=2, subplot_titles=("Histogram", "Box Plot"))
196
+ fig.add_trace(go.Histogram(x=df[column_name], name="Histogram"), row=1, col=1)
197
+ fig.add_trace(go.Box(y=df[column_name], name="Box Plot"), row=1, col=2)
198
+ fig.update_layout(title_text=f"Distribution of '{column_name}'", showlegend=False)
199
+ summary = df[column_name].describe().to_frame().to_markdown()
200
+
201
+ elif column_name in metadata['categorical_cols']:
202
+ top_n = 20
203
+ counts = df[column_name].value_counts()
204
+ title = f"Top {min(top_n, len(counts))} Categories for '{column_name}'"
205
+ fig = px.bar(counts.nlargest(top_n), title=title, labels={'index': column_name, 'value': 'Count'})
206
+ fig.update_layout(showlegend=False)
207
+ summary = counts.to_frame().to_markdown()
208
+
209
+ elif column_name in metadata['datetime_cols']:
210
+ counts = df[column_name].dt.to_period("M").value_counts().sort_index()
211
+ fig = px.line(x=counts.index.to_timestamp(), y=counts.values, title=f"Records over Time for '{column_name}'")
212
+ fig.update_layout(xaxis_title="Time", yaxis_title="Record Count")
213
+ summary = df[column_name].describe(datetime_is_numeric=True).to_frame().to_markdown()
214
+
215
+ return fig, summary
216
+
217
+ # --- Tab 3: Bivariate Analysis ---
218
+
219
+ def generate_bivariate_plot(x_col, y_col, state_dict):
220
+ """Generates plots to explore the relationship between two variables."""
221
+ if not x_col or not y_col or not state_dict:
222
+ return None, "Select two columns to analyze."
223
+ if x_col == y_col:
224
+ return None, "Please select two different columns."
225
+
226
+ df = state_dict['df']
227
+ metadata = state_dict['metadata']
228
+
229
+ x_type = 'numeric' if x_col in metadata['numeric_cols'] else 'categorical'
230
+ y_type = 'numeric' if y_col in metadata['numeric_cols'] else 'categorical'
231
+
232
+ fig = None
233
+ title = f"{x_col} vs. {y_col}"
234
+
235
+ if x_type == 'numeric' and y_type == 'numeric':
236
+ fig = px.scatter(df, x=x_col, y=y_col, title=f"Scatter Plot: {title}", trendline="ols", trendline_color_override="red")
237
+ summary = df[[x_col, y_col]].corr().to_markdown()
238
+ elif x_type == 'numeric' and y_type == 'categorical':
239
+ fig = px.box(df, x=x_col, y=y_col, title=f"Box Plot: {title}")
240
+ summary = df.groupby(y_col)[x_col].describe().to_markdown()
241
+ elif x_type == 'categorical' and y_type == 'numeric':
242
+ fig = px.box(df, x=y_col, y=x_col, title=f"Box Plot: {title}")
243
+ summary = df.groupby(x_col)[y_col].describe().to_markdown()
244
+ else: # Both categorical
245
+ crosstab = pd.crosstab(df[x_col], df[y_col])
246
+ fig = px.imshow(crosstab, title=f"Heatmap of Counts: {title}", text_auto=True)
247
+ summary = crosstab.to_markdown()
248
+
249
+ return fig, f"### Analysis Summary\n{summary}"
250
+
251
+ # --- Tab 4: Time Series Analysis ---
252
+
253
+ def generate_time_series_plot(time_col, value_col, resample_freq, state_dict):
254
+ """Generates a time series plot with resampling."""
255
+ if not time_col or not value_col or not state_dict:
256
+ return None, "Select Time and Value columns."
257
+
258
+ df = state_dict['df'].copy()
259
+
260
+ try:
261
+ df[time_col] = pd.to_datetime(df[time_col])
262
+ df_resampled = df.set_index(time_col)[value_col].resample(resample_freq).mean().reset_index()
263
+
264
+ fig = px.line(df_resampled, x=time_col, y=value_col,
265
+ title=f"Time Series of {value_col} (Resampled to '{resample_freq}')")
266
+ fig.update_layout(xaxis_title="Date", yaxis_title=f"Mean of {value_col}")
267
+ return fig, f"Showing mean of '{value_col}' aggregated by '{resample_freq}'."
268
+ except Exception as e:
269
+ return None, f"Error: {e}"
270
+
271
+ # --- Tab 5: AI Analyst Chat ---
272
+
273
+ def respond_to_chat(user_message, history, state_dict, api_key):
274
+ """Handles the chat interaction with the AI Analyst."""
275
+ if not api_key:
276
+ history.append((user_message, "I can't answer without a Gemini API key. Please enter it in the 'AI Overview' tab."))
277
+ return history, None, ""
278
+
279
+ if not state_dict:
280
+ history.append((user_message, "Please upload a dataset before asking questions."))
281
+ return history, None, ""
282
+
283
+ history.append((user_message, None))
284
+
285
+ df_metadata = state_dict['metadata']
286
+
287
+ # Construct a robust prompt for the AI
288
+ prompt = f"""
289
+ You are an AI Data Analyst assistant. Your name is 'Gemini Analyst'.
290
+ You are given a pandas DataFrame named `df`.
291
+ Your goal is to answer the user's question about this DataFrame by writing and executing Python code.
292
+
293
+ **Instructions:**
294
+ 1. Analyze the user's question.
295
+ 2. Write Python code to answer it.
296
+ 3. You can use pandas, numpy, and plotly.express.
297
+ 4. If you create a plot, you **MUST** assign it to a variable named `fig`. The plot will be displayed to the user.
298
+ 5. If you are just calculating something or printing text, the `print()` output will be shown.
299
+ 6. **DO NOT** write any code that modifies the DataFrame (e.g., `df.dropna(inplace=True)`). Use `df.copy()` if you need to modify data.
300
+ 7. Respond **ONLY** with a JSON object containing two keys: "thought" and "code".
301
+ - "thought": A short, one-sentence explanation of your plan.
302
+ - "code": A string containing the Python code to execute.
303
+
304
+ **DataFrame Metadata:**
305
+ - **Filename:** {state_dict['filename']}
306
+ - **Shape:** {df_metadata['shape'][0]} rows, {df_metadata['shape'][1]} columns
307
+ - **Columns and Data Types:**
308
+ {df_metadata['dtypes']}
309
+
310
+ ---
311
+ **User Question:** "{user_message}"
312
+ ---
313
+
314
+ **Your JSON Response:**
315
+ """
316
+
317
+ try:
318
+ genai.configure(api_key=api_key)
319
+ model = genai.GenerativeModel('gemini-1.5-flash')
320
+ response = model.generate_content(prompt)
321
+
322
+ # Clean and parse the JSON response
323
+ response_text = response.text.strip().replace("```json", "").replace("```", "")
324
+ response_json = json.loads(response_text)
325
+
326
+ thought = response_json.get("thought", "Thinking...")
327
+ code_to_run = response_json.get("code", "")
328
+
329
+ bot_message = f"🧠 **Thought:** {thought}\n\n"
330
+
331
+ # Execute the code
332
+ local_vars = {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np}
333
+ stdout, fig_result, error = safe_exec(code_to_run, local_vars)
334
+
335
+ if error:
336
+ bot_message += f"πŸ’₯ **Error:**\n```\n{error}\n```"
337
+ history[-1] = (user_message, bot_message)
338
+ return history, None, ""
339
+
340
+ if stdout:
341
+ bot_message += f"πŸ“‹ **Output:**\n```\n{stdout}\n```"
342
+
343
+ if not fig_result and not stdout:
344
+ bot_message += "βœ… Code executed successfully, but it produced no visible output."
345
+
346
+ history[-1] = (user_message, bot_message)
347
+
348
+ return history, fig_result, ""
349
+
350
+ except Exception as e:
351
+ error_msg = f"An unexpected error occurred: {e}. The AI might have returned an invalid response. Please try rephrasing your question."
352
+ logging.error(f"Chatbot error: {error_msg}")
353
+ history[-1] = (user_message, error_msg)
354
+ return history, None, ""
355
+
356
+ # --- Gradio Interface ---
357
+
358
+ def create_gradio_interface():
359
+ """Builds and returns the full Gradio application interface."""
360
+ with gr.Blocks(title="πŸš€ AI Data Explorer", theme=gr.themes.Soft()) as demo:
361
+ # Global state to hold data
362
+ global_state = gr.State({})
363
+
364
+ # Header
365
+ gr.Markdown("# πŸš€ AI Data Explorer: Your Advanced Analytic Tool")
366
+ gr.Markdown("Upload a CSV, then explore your data with interactive tabs and a powerful AI Analyst.")
367
+
368
+ # --- Top Row: File Upload and API Key ---
369
+ with gr.Row():
370
+ with gr.Column(scale=2):
371
+ file_input = gr.File(label="πŸ“ Upload CSV File", file_types=[".csv"])
372
+ status_output = gr.Markdown("Status: Waiting for file...")
373
+ with gr.Column(scale=1):
374
+ api_key_input = gr.Textbox(
375
+ label="πŸ”‘ Gemini API Key",
376
+ placeholder="Enter your key here...",
377
+ type="password",
378
+ info="Get your free key from Google AI Studio"
379
+ )
380
+
381
+ # --- Main Tabs ---
382
+ with gr.Tabs() as tabs:
383
+ # Tab 1: AI Overview
384
+ with gr.Tab("πŸ€– AI Overview", id=0):
385
+ overview_btn = gr.Button("🧠 Generate AI Overview", variant="primary")
386
+ with gr.Row():
387
+ story_output = gr.Markdown(label="πŸ“– AI-Generated Story")
388
+ with gr.Column():
389
+ basic_info_output = gr.Markdown(label="πŸ“‹ Basic Information")
390
+ quality_score = gr.Number(label="🎯 Data Quality Score (%)", interactive=False)
391
+
392
+ # Tab 2: Univariate Analysis
393
+ with gr.Tab("πŸ“Š Univariate Analysis", id=1):
394
+ uni_col_select = gr.Dropdown(label="Select a Column to Analyze", interactive=False)
395
+ with gr.Row():
396
+ uni_plot_output = gr.Plot(label="Distribution Plot")
397
+ uni_summary_output = gr.Markdown(label="Summary Statistics")
398
+
399
+ # Tab 3: Bivariate Analysis
400
+ with gr.Tab("πŸ“ˆ Bivariate Analysis", id=2):
401
+ with gr.Row():
402
+ bi_x_select = gr.Dropdown(label="Select X-Axis Column", interactive=False)
403
+ bi_y_select = gr.Dropdown(label="Select Y-Axis Column", interactive=False)
404
+ bi_btn = gr.Button("🎨 Generate Bivariate Plot", variant="secondary")
405
+ with gr.Row():
406
+ bi_plot_output = gr.Plot(label="Relationship Plot")
407
+ bi_summary_output = gr.Markdown(label="Analysis Summary")
408
+
409
+ # Tab 4: Time Series (conditionally visible)
410
+ with gr.Tab("⏳ Time Series Analysis", id=3, visible=False) as ts_tab:
411
+ with gr.Row():
412
+ ts_time_col = gr.Dropdown(label="Select Time Column", interactive=False)
413
+ ts_value_col = gr.Dropdown(label="Select Value Column", interactive=False)
414
+ ts_resample = gr.Radio(['D', 'W', 'M', 'Q', 'Y'], label="Resample Frequency", value='M')
415
+ ts_btn = gr.Button("πŸ“ˆ Plot Time Series", variant="secondary")
416
+ ts_plot_output = gr.Plot(label="Time Series Plot")
417
+ ts_status_output = gr.Markdown()
418
+
419
+ # Tab 5: AI Analyst Chat (conditionally visible)
420
+ with gr.Tab("πŸ’¬ AI Analyst Chat", id=4, visible=False) as chat_tab:
421
+ chatbot = gr.Chatbot(label="Chat with Gemini Analyst", height=500)
422
+ chat_plot_output = gr.Plot(label="AI Generated Plot")
423
+ with gr.Row():
424
+ chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'Show me the distribution of age'", scale=4)
425
+ chat_submit_btn = gr.Button("Submit", variant="primary", scale=1)
426
+ chat_clear_btn = gr.Button("Clear Chat")
427
+
428
+ # --- Event Handlers ---
429
+
430
+ # File upload triggers data loading and UI updates
431
+ file_input.upload(
432
+ fn=load_and_process_file,
433
+ inputs=[file_input, global_state],
434
+ outputs=[global_state, status_output, uni_col_select, bi_x_select, bi_y_select, ts_value_col, ts_time_col, ts_tab, chat_tab]
435
+ )
436
+
437
+ # Tab 1: Overview
438
+ overview_btn.click(
439
+ fn=analyze_dataset_overview,
440
+ inputs=[global_state, api_key_input],
441
+ outputs=[story_output, basic_info_output, quality_score]
442
+ )
443
+
444
+ # Tab 2: Univariate
445
+ uni_col_select.change(
446
+ fn=generate_univariate_plot,
447
+ inputs=[uni_col_select, global_state],
448
+ outputs=[uni_plot_output, uni_summary_output]
449
+ )
450
+
451
+ # Tab 3: Bivariate
452
+ bi_btn.click(
453
+ fn=generate_bivariate_plot,
454
+ inputs=[bi_x_select, bi_y_select, global_state],
455
+ outputs=[bi_plot_output, bi_summary_output]
456
+ )
457
+
458
+ # Tab 4: Time Series
459
+ ts_btn.click(
460
+ fn=generate_time_series_plot,
461
+ inputs=[ts_time_col, ts_value_col, ts_resample, global_state],
462
+ outputs=[ts_plot_output, ts_status_output]
463
+ )
464
+
465
+ # Tab 5: AI Chat
466
+ chat_submit_btn.click(
467
+ fn=respond_to_chat,
468
+ inputs=[chat_input, chatbot, global_state, api_key_input],
469
+ outputs=[chatbot, chat_plot_output, chat_input]
470
+ )
471
+ chat_input.submit(
472
+ fn=respond_to_chat,
473
+ inputs=[chat_input, chatbot, global_state, api_key_input],
474
+ outputs=[chatbot, chat_plot_output, chat_input]
475
+ )
476
+ chat_clear_btn.click(lambda: ([], None, ""), None, [chatbot, chat_plot_output, chat_input])
477
+
478
+
479
+ return demo
480
+
481
+ # --- Main Application Execution ---
482
+ if __name__ == "__main__":
483
+ # For local development, you might use load_dotenv()
484
+ # load_dotenv()
485
+ app = create_gradio_interface()
486
+ app.launch(debug=True)