mgbam commited on
Commit
c224edd
Β·
verified Β·
1 Parent(s): 0e9d8f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -35
app.py CHANGED
@@ -8,6 +8,7 @@ import warnings
8
  import google.generativeai as genai
9
  import os
10
  from typing import List, Dict, Any, Tuple, Optional
 
11
 
12
  # --- Configuration & Constants ---
13
  warnings.filterwarnings('ignore')
@@ -43,8 +44,8 @@ class DataExplorerApp:
43
  status_output = gr.Markdown("Status: Awaiting data...")
44
  api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key to enable AI...")
45
  suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
46
- rows_stat, cols_stat = gr.Textbox("0", interactive=False, show_label=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, show_label=False, elem_classes="stat-card-value")
47
- quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, show_label=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, show_label=False, elem_classes="stat-card-value")
48
  suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
49
  plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
50
  x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
@@ -67,10 +68,8 @@ class DataExplorerApp:
67
  with cockpit_page:
68
  gr.Markdown("## πŸ“Š Data Cockpit: At-a-Glance Overview")
69
  with gr.Row():
70
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat
71
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat
72
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat
73
- with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat
74
  with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons]
75
  with deep_dive_page:
76
  gr.Markdown("## πŸ” Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.")
@@ -84,15 +83,12 @@ class DataExplorerApp:
84
 
85
  # Event Handlers Registration
86
  pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn]
87
-
88
  for i, btn in enumerate(nav_buttons):
89
  btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
90
  lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
91
 
92
  file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
93
- state_var, status_output, *pages, rows_stat, cols_stat, quality_stat, time_cols_stat,
94
- x_col_dd, y_col_dd, add_plot_btn]).then(lambda: self._switch_page("cockpit", pages), outputs=pages).then(
95
- lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
96
 
97
  api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
98
  chat_input.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[chat_input], outputs=[chat_submit_btn])
@@ -103,9 +99,7 @@ class DataExplorerApp:
103
 
104
  suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
105
  for btn in suggestion_buttons:
106
- btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input]).then(
107
- lambda: self._switch_page("co-pilot", pages), outputs=pages).then(
108
- lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
109
 
110
  chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
111
  chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
@@ -113,12 +107,12 @@ class DataExplorerApp:
113
 
114
  def launch(self): self.demo.launch(debug=True)
115
 
 
116
  def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
117
  visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3}
118
  return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
119
 
120
- def _update_plot_controls(self, plot_type: str) -> gr.update:
121
- return gr.update(visible=plot_type in ['scatter', 'box'])
122
 
123
  def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
124
  try:
@@ -127,16 +121,14 @@ class DataExplorerApp:
127
  state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
128
  rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
129
  page_updates = self._switch_page("cockpit", [0,1,2,3])
130
- return (state, f"βœ… **{os.path.basename(file_obj.name)}** loaded.", *page_updates,
131
- f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
132
  gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
133
  except Exception as e:
134
  gr.Error(f"File Load Error: {e}"); page_updates = self._switch_page("welcome", [0,1,2,3]);
135
  return {}, f"❌ Error: {e}", *page_updates, "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
136
 
137
  def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
138
- rows, cols = df.shape
139
- quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
140
  return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
141
  'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
142
  'dtypes_head': df.head(3).to_string(), 'data_quality': quality}
@@ -168,9 +160,7 @@ class DataExplorerApp:
168
  def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
169
  if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
170
  if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
171
- # CORRECTED: Defensive and correct assignment
172
- metadata = state.get('metadata', {})
173
- columns = metadata.get('columns', [])
174
  prompt = f"From columns {columns}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
175
  try:
176
  genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
@@ -180,24 +170,37 @@ class DataExplorerApp:
180
  def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
181
  return *self._switch_page("co-pilot", [0,1,2,3]), question
182
 
 
 
 
 
 
 
 
 
183
  def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
184
  if not user_message.strip(): return history, *[gr.update()]*4
185
  if not api_key or not state:
186
- msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
187
 
188
  history.append((user_message, "Thinking... πŸ€”")); yield history, *[gr.update(visible=False)]*4
189
 
190
- # CRITICAL FIX: Correctly and safely get metadata before using it.
191
- metadata = state.get('metadata', {})
192
- dtypes_head = metadata.get('dtypes_head', 'No metadata available.')
193
-
194
- prompt = f"""You are 'Chief Data Scientist', an expert AI analyst...
195
- Respond ONLY with a single JSON object with keys: "plan", "code", "insight".
196
- Metadata: {dtypes_head}
197
- User Question: "{user_message}"
 
 
198
  """
199
  try:
200
- genai.configure(api_key=api_key); response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
 
 
 
201
  plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
202
  stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
203
 
@@ -209,7 +212,7 @@ class DataExplorerApp:
209
  yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
210
  gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
211
  except Exception as e:
212
- history[-1] = (user_message, f"I encountered an error processing the AI response. Please rephrase your question. (Error: {e})")
213
  yield history, *[gr.update(visible=False)]*4
214
 
215
  def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
@@ -224,8 +227,7 @@ if __name__ == "__main__":
224
  try:
225
  from PIL import Image
226
  Image.new('RGB', (1, 1)).save('bot.png')
227
- except ImportError:
228
- print("Pillow not installed, cannot create dummy bot.png. Please create it manually.")
229
 
230
  app = DataExplorerApp()
231
  app.launch()
 
8
  import google.generativeai as genai
9
  import os
10
  from typing import List, Dict, Any, Tuple, Optional
11
+ import re
12
 
13
  # --- Configuration & Constants ---
14
  warnings.filterwarnings('ignore')
 
44
  status_output = gr.Markdown("Status: Awaiting data...")
45
  api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key to enable AI...")
46
  suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
47
+ rows_stat, cols_stat = gr.Textbox("0", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
48
+ quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
49
  suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
50
  plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
51
  x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
 
68
  with cockpit_page:
69
  gr.Markdown("## πŸ“Š Data Cockpit: At-a-Glance Overview")
70
  with gr.Row():
71
+ for title, stat_comp in [("Rows", rows_stat), ("Columns", cols_stat), ("Data Quality", quality_stat), ("Date/Time Cols", time_cols_stat)]:
72
+ with gr.Column(elem_classes="stat-card"): gr.Markdown(f"<div class='stat-card-title'>{title}</div>"); stat_comp
 
 
73
  with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons]
74
  with deep_dive_page:
75
  gr.Markdown("## πŸ” Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.")
 
83
 
84
  # Event Handlers Registration
85
  pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn]
 
86
  for i, btn in enumerate(nav_buttons):
87
  btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
88
  lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
89
 
90
  file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
91
+ state_var, status_output, *pages, rows_stat, cols_stat, quality_stat, time_cols_stat, x_col_dd, y_col_dd, add_plot_btn])
 
 
92
 
93
  api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
94
  chat_input.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[chat_input], outputs=[chat_submit_btn])
 
99
 
100
  suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
101
  for btn in suggestion_buttons:
102
+ btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input])
 
 
103
 
104
  chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
105
  chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
 
107
 
108
  def launch(self): self.demo.launch(debug=True)
109
 
110
+ # --- Backend Logic Methods ---
111
  def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
112
  visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3}
113
  return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
114
 
115
+ def _update_plot_controls(self, plot_type: str) -> gr.update: return gr.update(visible=plot_type in ['scatter', 'box'])
 
116
 
117
  def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
118
  try:
 
121
  state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
122
  rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
123
  page_updates = self._switch_page("cockpit", [0,1,2,3])
124
+ return (state, f"βœ… **{os.path.basename(file_obj.name)}** loaded.", *page_updates, f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
 
125
  gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
126
  except Exception as e:
127
  gr.Error(f"File Load Error: {e}"); page_updates = self._switch_page("welcome", [0,1,2,3]);
128
  return {}, f"❌ Error: {e}", *page_updates, "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
129
 
130
  def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
131
+ rows, cols, quality = df.shape[0], df.shape[1], round((df.notna().sum().sum() / (df.size)) * 100, 1) if df.size > 0 else 0
 
132
  return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
133
  'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
134
  'dtypes_head': df.head(3).to_string(), 'data_quality': quality}
 
160
  def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
161
  if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
162
  if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
163
+ metadata, columns = state.get('metadata', {}), state.get('metadata', {}).get('columns', [])
 
 
164
  prompt = f"From columns {columns}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
165
  try:
166
  genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
 
170
  def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
171
  return *self._switch_page("co-pilot", [0,1,2,3]), question
172
 
173
+ def _sanitize_and_parse_json(self, raw_text: str) -> Dict:
174
+ """Cleans and parses a JSON string from an LLM response."""
175
+ # Remove markdown code blocks
176
+ clean_text = re.sub(r'```json\n?|```', '', raw_text).strip()
177
+ # Escape single backslashes that are not already escaped
178
+ clean_text = re.sub(r'(?<!\\)\\(?!["\\/bfnrtu])', r'\\\\', clean_text)
179
+ return json.loads(clean_text)
180
+
181
  def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
182
  if not user_message.strip(): return history, *[gr.update()]*4
183
  if not api_key or not state:
184
+ history.append((user_message, "I need a Gemini API key and a dataset to work.")); return history, *[gr.update(visible=False)]*4
185
 
186
  history.append((user_message, "Thinking... πŸ€”")); yield history, *[gr.update(visible=False)]*4
187
 
188
+ metadata, dtypes_head = state.get('metadata', {}), state.get('metadata', {}).get('dtypes_head', 'No metadata available.')
189
+ prompt = f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
190
+ **Instructions:**
191
+ 1. **Analyze:** Understand the user's intent. Infer the best plot type.
192
+ 2. **Plan:** Briefly explain your plan.
193
+ 3. **Code:** Write Python code. Use `fig` for plots (`template='plotly_dark'`) and `result_df` for tables.
194
+ 4. **Insight:** Provide a one-sentence business insight.
195
+ 5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
196
+ **Metadata:** {dtypes_head}
197
+ **User Question:** "{user_message}"
198
  """
199
  try:
200
+ genai.configure(api_key=api_key)
201
+ # CRITICAL FIX: Use the new sanitizer function
202
+ response_json = self._sanitize_and_parse_json(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
203
+
204
  plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
205
  stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
206
 
 
212
  yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
213
  gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
214
  except Exception as e:
215
+ history[-1] = (user_message, f"I encountered an error processing the AI response. Please rephrase your question.\n\n**Details:** `{str(e)}`")
216
  yield history, *[gr.update(visible=False)]*4
217
 
218
  def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
 
227
  try:
228
  from PIL import Image
229
  Image.new('RGB', (1, 1)).save('bot.png')
230
+ except ImportError: print("Pillow not installed, cannot create dummy bot.png.")
 
231
 
232
  app = DataExplorerApp()
233
  app.launch()