Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,9 @@ from typing import List, Dict, Any, Tuple, Optional
|
|
11 |
|
12 |
# --- Configuration & Constants ---
|
13 |
warnings.filterwarnings('ignore')
|
14 |
-
|
15 |
CSS = """
|
16 |
-
|
17 |
-
#app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; }
|
18 |
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
|
19 |
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
|
20 |
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
|
@@ -25,7 +24,6 @@ CSS = """
|
|
25 |
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; }
|
26 |
.explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; }
|
27 |
"""
|
28 |
-
MAX_DASHBOARD_PLOTS = 10
|
29 |
|
30 |
class DataExplorerApp:
|
31 |
"""A professional-grade, AI-powered data exploration application."""
|
@@ -37,28 +35,37 @@ class DataExplorerApp:
|
|
37 |
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
|
38 |
state_var = gr.State({})
|
39 |
|
40 |
-
# --- Component Definition ---
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key to enable AI...")
|
44 |
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
|
49 |
|
|
|
50 |
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
|
51 |
x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
|
52 |
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
|
53 |
-
add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard")
|
54 |
-
|
55 |
-
# CORRECTED: Use a dynamic set of Plot components, not Gallery
|
56 |
dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)]
|
57 |
|
58 |
-
|
|
|
59 |
copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
|
60 |
copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)
|
61 |
-
|
|
|
62 |
# --- Layout Arrangement ---
|
63 |
with gr.Row():
|
64 |
with gr.Column(scale=1, elem_classes="sidebar"):
|
@@ -66,7 +73,7 @@ class DataExplorerApp:
|
|
66 |
file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
|
67 |
with gr.Column(scale=4):
|
68 |
welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)]
|
69 |
-
with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin.")
|
70 |
with cockpit_page:
|
71 |
gr.Markdown("## π Data Cockpit: At-a-Glance Overview")
|
72 |
with gr.Row():
|
@@ -79,7 +86,7 @@ class DataExplorerApp:
|
|
79 |
gr.Markdown("## π Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.")
|
80 |
with gr.Row(): plot_type_dd; x_col_dd; y_col_dd
|
81 |
with gr.Row(): add_plot_btn; clear_plots_btn
|
82 |
-
with gr.Column(): [plot for plot in dashboard_plots]
|
83 |
with copilot_page:
|
84 |
gr.Markdown("## π€ Chief Data Scientist: Your AI Partner"); chatbot
|
85 |
with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
|
@@ -92,16 +99,18 @@ class DataExplorerApp:
|
|
92 |
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
|
93 |
|
94 |
file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
|
95 |
-
state_var, status_output,
|
96 |
x_col_dd, y_col_dd, add_plot_btn]).then(lambda: self._switch_page("cockpit", pages), outputs=pages).then(
|
97 |
lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
|
98 |
|
99 |
api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
|
|
|
|
|
100 |
plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
|
101 |
-
add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, *dashboard_plots])
|
102 |
-
clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, *dashboard_plots])
|
103 |
-
suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
|
104 |
|
|
|
105 |
for btn in suggestion_buttons:
|
106 |
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input]).then(
|
107 |
lambda: self._switch_page("co-pilot", pages), outputs=pages).then(
|
@@ -113,8 +122,9 @@ class DataExplorerApp:
|
|
113 |
|
114 |
def launch(self): self.demo.launch(debug=True)
|
115 |
|
|
|
116 |
def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
|
117 |
-
visibility = {"
|
118 |
return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
|
119 |
|
120 |
def _update_plot_controls(self, plot_type: str) -> gr.update:
|
@@ -126,11 +136,12 @@ class DataExplorerApp:
|
|
126 |
metadata = self._extract_dataset_metadata(df)
|
127 |
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
|
128 |
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
132 |
except Exception as e:
|
133 |
-
gr.Error(f"File Load Error: {e}"); return {}, f"β Error: {e}",
|
134 |
|
135 |
def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
|
136 |
rows, cols = df.shape
|
@@ -141,9 +152,10 @@ class DataExplorerApp:
|
|
141 |
|
142 |
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> List[Any]:
|
143 |
if len(state.get('dashboard_plots', [])) >= MAX_DASHBOARD_PLOTS:
|
144 |
-
gr.Warning(f"Dashboard is full. Max {MAX_DASHBOARD_PLOTS} plots
|
145 |
-
if not x_col: gr.Warning("Please select
|
146 |
-
df
|
|
|
147 |
try:
|
148 |
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
|
149 |
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
|
@@ -153,62 +165,48 @@ class DataExplorerApp:
|
|
153 |
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
|
154 |
if fig:
|
155 |
fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to dashboard.")
|
156 |
-
return [state, *self._get_plot_updates(state)]
|
157 |
-
except Exception as e: gr.Error(f"Plotting Error: {e}"); return [state, *self._get_plot_updates(state)]
|
158 |
|
159 |
def _get_plot_updates(self, state: Dict) -> List[gr.update]:
|
160 |
plots = state.get('dashboard_plots', [])
|
161 |
-
|
162 |
-
for i in range(MAX_DASHBOARD_PLOTS):
|
163 |
-
if i < len(plots): updates.append(gr.update(value=plots[i], visible=True))
|
164 |
-
else: updates.append(gr.update(value=None, visible=False))
|
165 |
-
return updates
|
166 |
|
167 |
def clear_dashboard(self, state: Dict) -> List[Any]:
|
168 |
-
state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return [state, *self._get_plot_updates(state)]
|
169 |
|
170 |
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
|
171 |
if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
|
172 |
if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
|
173 |
-
|
174 |
-
metadata = state['metadata']
|
175 |
-
prompt = f"From columns {metadata['columns']}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
|
176 |
try:
|
177 |
genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
|
178 |
return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
|
179 |
except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5
|
180 |
|
181 |
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
|
182 |
-
return
|
183 |
|
184 |
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
|
185 |
-
if not user_message.strip():
|
186 |
if not api_key or not state:
|
187 |
msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
|
188 |
|
189 |
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
|
190 |
|
191 |
metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst...
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
3. **Code:** Write Python code. Use `fig` for plots (`template='plotly_dark'`) and `result_df` for tables.
|
196 |
-
4. **Insight:** Provide a one-sentence business insight.
|
197 |
-
5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
|
198 |
-
**Metadata:** {metadata['dtypes_head']}
|
199 |
-
**User Question:** "{user_message}"
|
200 |
"""
|
201 |
try:
|
202 |
-
genai.configure(api_key=api_key)
|
203 |
-
response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
|
204 |
plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
|
205 |
stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
|
206 |
-
|
207 |
history[-1] = (user_message, f"**Plan:** {plan}")
|
208 |
explanation = f"**Insight:** {insight}"
|
209 |
if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
|
210 |
if error: gr.Error(f"AI Code Execution Failed: {error}")
|
211 |
-
|
212 |
yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
|
213 |
gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
|
214 |
except Exception as e:
|
@@ -216,12 +214,24 @@ class DataExplorerApp:
|
|
216 |
yield history, *[gr.update(visible=False)]*4
|
217 |
|
218 |
def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
|
219 |
-
output_buffer = io.StringIO()
|
220 |
try:
|
|
|
221 |
with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
|
222 |
return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
|
223 |
except Exception as e: return None, None, None, str(e)
|
224 |
|
225 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
app = DataExplorerApp()
|
227 |
app.launch()
|
|
|
11 |
|
12 |
# --- Configuration & Constants ---
|
13 |
warnings.filterwarnings('ignore')
|
14 |
+
MAX_DASHBOARD_PLOTS = 10
|
15 |
CSS = """
|
16 |
+
#app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; padding-top: 10px; }
|
|
|
17 |
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
|
18 |
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
|
19 |
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
|
|
|
24 |
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; }
|
25 |
.explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; }
|
26 |
"""
|
|
|
27 |
|
28 |
class DataExplorerApp:
|
29 |
"""A professional-grade, AI-powered data exploration application."""
|
|
|
35 |
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
|
36 |
state_var = gr.State({})
|
37 |
|
38 |
+
# --- Component Definition (Define-Then-Place Pattern) ---
|
39 |
+
# Sidebar
|
40 |
+
### CRITICAL FIX HERE ###
|
41 |
+
# Buttons are defined individually with their value (text) to fix the "Run" bug.
|
42 |
+
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected", elem_id="cockpit")
|
43 |
+
deep_dive_btn = gr.Button("π Deep Dive Builder", elem_id="deep_dive")
|
44 |
+
copilot_btn = gr.Button("π€ Chief Data Scientist", elem_id="co-pilot")
|
45 |
+
|
46 |
+
file_input = gr.File(label="π Upload CSV File", file_types=[".csv"])
|
47 |
+
status_output = gr.Markdown("Status: Awaiting data...")
|
48 |
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key to enable AI...")
|
49 |
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
|
50 |
|
51 |
+
# Cockpit
|
52 |
+
rows_stat, cols_stat = gr.Textbox("0", interactive=False, show_label=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, show_label=False, elem_classes="stat-card-value")
|
53 |
+
quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, show_label=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, show_label=False, elem_classes="stat-card-value")
|
54 |
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
|
55 |
|
56 |
+
# Deep Dive
|
57 |
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
|
58 |
x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
|
59 |
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
|
60 |
+
add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard", interactive=False)
|
|
|
|
|
61 |
dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)]
|
62 |
|
63 |
+
# Co-pilot
|
64 |
+
chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True, avatar_images=(None, "bot.png"))
|
65 |
copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
|
66 |
copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)
|
67 |
+
chat_input, chat_submit_btn = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4), gr.Button("Ask AI", variant="primary", interactive=False)
|
68 |
+
|
69 |
# --- Layout Arrangement ---
|
70 |
with gr.Row():
|
71 |
with gr.Column(scale=1, elem_classes="sidebar"):
|
|
|
73 |
file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
|
74 |
with gr.Column(scale=4):
|
75 |
welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)]
|
76 |
+
with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
|
77 |
with cockpit_page:
|
78 |
gr.Markdown("## π Data Cockpit: At-a-Glance Overview")
|
79 |
with gr.Row():
|
|
|
86 |
gr.Markdown("## π Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.")
|
87 |
with gr.Row(): plot_type_dd; x_col_dd; y_col_dd
|
88 |
with gr.Row(): add_plot_btn; clear_plots_btn
|
89 |
+
with gr.Column(): [plot for plot in dashboard_plots]
|
90 |
with copilot_page:
|
91 |
gr.Markdown("## π€ Chief Data Scientist: Your AI Partner"); chatbot
|
92 |
with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
|
|
|
99 |
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
|
100 |
|
101 |
file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
|
102 |
+
state_var, status_output, *pages, rows_stat, cols_stat, quality_stat, time_cols_stat,
|
103 |
x_col_dd, y_col_dd, add_plot_btn]).then(lambda: self._switch_page("cockpit", pages), outputs=pages).then(
|
104 |
lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
|
105 |
|
106 |
api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
|
107 |
+
chat_input.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[chat_input], outputs=[chat_submit_btn])
|
108 |
+
|
109 |
plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
|
110 |
+
add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, clear_plots_btn, *dashboard_plots])
|
111 |
+
clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, clear_plots_btn, *dashboard_plots])
|
|
|
112 |
|
113 |
+
suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
|
114 |
for btn in suggestion_buttons:
|
115 |
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input]).then(
|
116 |
lambda: self._switch_page("co-pilot", pages), outputs=pages).then(
|
|
|
122 |
|
123 |
def launch(self): self.demo.launch(debug=True)
|
124 |
|
125 |
+
# --- Backend Logic Methods ---
|
126 |
def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
|
127 |
+
visibility = {"cockpit": 1, "deep_dive": 2, "co-pilot": 3}
|
128 |
return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
|
129 |
|
130 |
def _update_plot_controls(self, plot_type: str) -> gr.update:
|
|
|
136 |
metadata = self._extract_dataset_metadata(df)
|
137 |
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
|
138 |
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
|
139 |
+
updates = (state, f"β
**{os.path.basename(file_obj.name)}** loaded.", *self._switch_page("cockpit", [0,1,2,3]),
|
140 |
+
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
|
141 |
+
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
|
142 |
+
return updates
|
143 |
except Exception as e:
|
144 |
+
gr.Error(f"File Load Error: {e}"); return {}, f"β Error: {e}", *self._switch_page("welcome", [0,1,2,3]), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
|
145 |
|
146 |
def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
|
147 |
rows, cols = df.shape
|
|
|
152 |
|
153 |
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> List[Any]:
|
154 |
if len(state.get('dashboard_plots', [])) >= MAX_DASHBOARD_PLOTS:
|
155 |
+
gr.Warning(f"Dashboard is full. Max {MAX_DASHBOARD_PLOTS} plots."); return [state, gr.update(), *self._get_plot_updates(state)]
|
156 |
+
if not x_col: gr.Warning("Please select an X-axis column."); return [state, gr.update(), *self._get_plot_updates(state)]
|
157 |
+
df = state['df']
|
158 |
+
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}"
|
159 |
try:
|
160 |
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
|
161 |
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
|
|
|
165 |
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
|
166 |
if fig:
|
167 |
fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to dashboard.")
|
168 |
+
return [state, gr.update(interactive=True), *self._get_plot_updates(state)]
|
169 |
+
except Exception as e: gr.Error(f"Plotting Error: {e}"); return [state, gr.update(), *self._get_plot_updates(state)]
|
170 |
|
171 |
def _get_plot_updates(self, state: Dict) -> List[gr.update]:
|
172 |
plots = state.get('dashboard_plots', [])
|
173 |
+
return [gr.update(value=plots[i] if i < len(plots) else None, visible=i < len(plots)) for i in range(MAX_DASHBOARD_PLOTS)]
|
|
|
|
|
|
|
|
|
174 |
|
175 |
def clear_dashboard(self, state: Dict) -> List[Any]:
|
176 |
+
state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return [state, gr.update(interactive=False), *self._get_plot_updates(state)]
|
177 |
|
178 |
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
|
179 |
if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
|
180 |
if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
|
181 |
+
metadata = state['metadata']; prompt = f"From columns {metadata['columns']}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
|
|
|
|
|
182 |
try:
|
183 |
genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
|
184 |
return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
|
185 |
except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5
|
186 |
|
187 |
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
|
188 |
+
return *self._switch_page("co-pilot", [0,1,2,3]), question
|
189 |
|
190 |
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
|
191 |
+
if not user_message.strip(): return history, *[gr.update()]*4
|
192 |
if not api_key or not state:
|
193 |
msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
|
194 |
|
195 |
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
|
196 |
|
197 |
metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst...
|
198 |
+
Respond ONLY with a single JSON object with keys: "plan", "code", "insight".
|
199 |
+
Metadata: {metadata['dtypes_head']}
|
200 |
+
User Question: "{user_message}"
|
|
|
|
|
|
|
|
|
|
|
201 |
"""
|
202 |
try:
|
203 |
+
genai.configure(api_key=api_key); response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
|
|
|
204 |
plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
|
205 |
stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
|
|
|
206 |
history[-1] = (user_message, f"**Plan:** {plan}")
|
207 |
explanation = f"**Insight:** {insight}"
|
208 |
if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
|
209 |
if error: gr.Error(f"AI Code Execution Failed: {error}")
|
|
|
210 |
yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
|
211 |
gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
|
212 |
except Exception as e:
|
|
|
214 |
yield history, *[gr.update(visible=False)]*4
|
215 |
|
216 |
def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
|
|
|
217 |
try:
|
218 |
+
output_buffer = io.StringIO()
|
219 |
with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
|
220 |
return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
|
221 |
except Exception as e: return None, None, None, str(e)
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
+
# Create dummy files for avatar images if they don't exist
|
225 |
+
if not os.path.exists("bot.png"):
|
226 |
+
from PIL import Image
|
227 |
+
img = Image.new('RGB', (100, 100), color = 'darkblue')
|
228 |
+
img.save('bot.png')
|
229 |
+
if not os.path.exists("user.png"):
|
230 |
+
from PIL import Image
|
231 |
+
img = Image.new('RGB', (100, 100), color = 'gray')
|
232 |
+
img.save('user.png')
|
233 |
+
if not os.path.exists("workflow.png"):
|
234 |
+
gr.Warning("workflow.png not found. The welcome screen image will be missing.")
|
235 |
+
|
236 |
app = DataExplorerApp()
|
237 |
app.launch()
|