import gradio as gr import pandas as pd import numpy as np import plotly.express as px import io import json import warnings import google.generativeai as genai import os from typing import List, Dict, Any, Tuple, Optional # --- Configuration & Constants --- warnings.filterwarnings('ignore') CSS = """ /* --- Phoenix UI Professional Dark CSS --- */ #app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; } .stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; } .stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); } .stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; } .stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; } .sidebar { background-color: #111827 !important; padding: 15px; border-right: 1px solid #374151 !important; min-height: 100vh; } .sidebar .gr-button { width: 100%; text-align: left !important; background: none !important; border: none !important; box-shadow: none !important; color: #d1d5db !important; font-size: 16px !important; padding: 12px 10px !important; margin-bottom: 8px !important; border-radius: 8px !important; transition: background-color 0.2s ease; } .sidebar .gr-button:hover { background-color: #374151 !important; } .sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; } .explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; } """ MAX_DASHBOARD_PLOTS = 10 class DataExplorerApp: """A professional-grade, AI-powered data exploration application.""" def __init__(self): self.demo = self._build_ui() def _build_ui(self) -> gr.Blocks: with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo: state_var = gr.State({}) # --- Component Definition --- cockpit_btn, deep_dive_btn, copilot_btn = [gr.Button(elem_id=id) for id in ["cockpit", "deep_dive", "co-pilot"]] file_input, status_output = gr.File(label="📁 Upload CSV File", file_types=[".csv"]), gr.Markdown("Status: Awaiting data...") api_key_input = gr.Textbox(label="🔑 Gemini API Key", type="password", placeholder="Enter key to enable AI...") suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False) rows_stat, cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False), gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False) quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value", show_label=False), gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False) suggestion_buttons = [gr.Button(visible=False) for _ in range(5)] plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram') x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False) y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False) add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard") # CORRECTED: Use a dynamic set of Plot components, not Gallery dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)] chatbot, chat_input, chat_submit_btn = gr.Chatbot(height=500, label="Conversation", show_copy_button=True), gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4), gr.Button("Ask AI", variant="primary") copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code") copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True) # --- Layout Arrangement --- with gr.Row(): with gr.Column(scale=1, elem_classes="sidebar"): gr.Markdown("## 🚀 AI Explorer Pro", elem_id="app-title"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---") file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn with gr.Column(scale=4): welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)] with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin.") with cockpit_page: gr.Markdown("## 📊 Data Cockpit: At-a-Glance Overview") with gr.Row(): with gr.Column(elem_classes="stat-card"): gr.Markdown("
Rows
"); rows_stat with gr.Column(elem_classes="stat-card"): gr.Markdown("
Columns
"); cols_stat with gr.Column(elem_classes="stat-card"): gr.Markdown("
Data Quality
"); quality_stat with gr.Column(elem_classes="stat-card"): gr.Markdown("
Date/Time Cols
"); time_cols_stat with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons] with deep_dive_page: gr.Markdown("## 🔍 Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.") with gr.Row(): plot_type_dd; x_col_dd; y_col_dd with gr.Row(): add_plot_btn; clear_plots_btn with gr.Column(): [plot for plot in dashboard_plots] # Place the plot holders with copilot_page: gr.Markdown("## 🤖 Chief Data Scientist: Your AI Partner"); chatbot with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table with gr.Row(): chat_input; chat_submit_btn # --- Event Handlers Registration --- pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn] for i, btn in enumerate(nav_buttons): btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then( lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons) file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[ state_var, status_output, welcome_page, cockpit_page, rows_stat, cols_stat, quality_stat, time_cols_stat, x_col_dd, y_col_dd, add_plot_btn]).then(lambda: self._switch_page("cockpit", pages), outputs=pages).then( lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons) api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn]) plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd]) add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, *dashboard_plots]) clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, *dashboard_plots]) suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons) for btn in suggestion_buttons: btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input]).then( lambda: self._switch_page("co-pilot", pages), outputs=pages).then( lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons) chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input]) chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input]) return demo def launch(self): self.demo.launch(debug=True) def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]: visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3} return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))] def _update_plot_controls(self, plot_type: str) -> gr.update: return gr.update(visible=plot_type in ['scatter', 'box']) def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]: try: df = pd.read_csv(file_obj.name, low_memory=False) metadata = self._extract_dataset_metadata(df) state = {'df': df, 'metadata': metadata, 'dashboard_plots': []} rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality'] return (state, f"✅ **{os.path.basename(file_obj.name)}** loaded.", gr.update(visible=False), gr.update(visible=True), f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}", gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True)) except Exception as e: gr.Error(f"File Load Error: {e}"); return {}, f"❌ Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False) def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]: rows, cols = df.shape quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0 return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(), 'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(), 'dtypes_head': df.head(3).to_string(), 'data_quality': quality} def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> List[Any]: if len(state.get('dashboard_plots', [])) >= MAX_DASHBOARD_PLOTS: gr.Warning(f"Dashboard is full. Max {MAX_DASHBOARD_PLOTS} plots allowed."); return [state, *self._get_plot_updates(state)] if not x_col: gr.Warning("Please select at least an X-axis column."); return [state, *self._get_plot_updates(state)] df, title = state['df'], f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}" try: if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title) elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title) elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols") elif plot_type == 'bar': counts = df[x_col].value_counts().nlargest(20) fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'}) if fig: fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to dashboard.") return [state, *self._get_plot_updates(state)] except Exception as e: gr.Error(f"Plotting Error: {e}"); return [state, *self._get_plot_updates(state)] def _get_plot_updates(self, state: Dict) -> List[gr.update]: plots = state.get('dashboard_plots', []) updates = [] for i in range(MAX_DASHBOARD_PLOTS): if i < len(plots): updates.append(gr.update(value=plots[i], visible=True)) else: updates.append(gr.update(value=None, visible=False)) return updates def clear_dashboard(self, state: Dict) -> List[Any]: state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return [state, *self._get_plot_updates(state)] def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]: if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5 if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5 # CORRECTED: metadata assignment metadata = state['metadata'] prompt = f"From columns {metadata['columns']}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings." try: genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text) return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions)) except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5 def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any: if not user_message.strip(): gr.Warning("Message is empty."); return history, *[gr.update()]*4 if not api_key or not state: msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4 history.append((user_message, "Thinking... 🤔")); yield history, *[gr.update(visible=False)]*4 metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst... **Instructions:** 1. **Analyze:** Understand user intent. Infer best plot type. 2. **Plan:** Briefly explain your plan. 3. **Code:** Write Python code. Use `fig` for plots (`template='plotly_dark'`) and `result_df` for tables. 4. **Insight:** Provide a one-sentence business insight. 5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".** **Metadata:** {metadata['dtypes_head']} **User Question:** "{user_message}" """ try: genai.configure(api_key=api_key) response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", "")) plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight") stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd}) history[-1] = (user_message, f"**Plan:** {plan}") explanation = f"**Insight:** {insight}" if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```" if error: gr.Error(f"AI Code Execution Failed: {error}") yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code), gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result)) except Exception as e: history[-1] = (user_message, f"I encountered an error. Please rephrase your question. (Error: {e})") yield history, *[gr.update(visible=False)]*4 def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]: output_buffer = io.StringIO() try: with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars) return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None except Exception as e: return None, None, None, str(e) if __name__ == "__main__": app = DataExplorerApp() app.launch()