# -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA - The Adaptive Intelligence Engine # # DESCRIPTION: A world-class data discovery platform that transcends static EDA. # It intelligently profiles datasets to unlock specialized analysis # modules for Time-Series, Text, and Unsupervised Learning, providing # a context-aware, deeply insightful user experience. # # SETUP: $ pip install -r requirements.txt # # AUTHOR: An MCP Expert in Data & AI Solutions # VERSION: 4.0 (Adaptive Intelligence Engine) # LAST-UPDATE: 2023-10-29 (Major architectural refactor for adaptive modules) from __future__ import annotations import warnings import logging import os import sys import importlib.util from datetime import datetime from typing import Any, Dict, List, Optional, Tuple import gradio as gr import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import google.generativeai as genai # --- Local Adaptive Modules --- from analysis_modules import analyze_time_series, generate_word_cloud, perform_clustering # --- Configuration & Setup (Identical to previous versions) --- logging.basicConfig(level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s') warnings.filterwarnings('ignore', category=FutureWarning) class Config: APP_TITLE = "🚀 CognitiveEDA: The Adaptive Intelligence Engine" GEMINI_MODEL = 'gemini-1.5-flash-latest' CORR_THRESHOLD = 0.75 TOP_N_CATEGORIES = 10 MAX_UI_ROWS = 50000 # Sample large datasets for UI responsiveness # --- Core Analysis Engine (Mostly unchanged, added context to AI prompt) --- class DataAnalyzer: def __init__(self, df: pd.DataFrame): if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.") self.df = df self._metadata: Optional[Dict[str, Any]] = None logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}") @property def metadata(self) -> Dict[str, Any]: if self._metadata is None: self._metadata = self._extract_metadata() return self._metadata def _extract_metadata(self) -> Dict[str, Any]: # (This method remains the same as v3.2) rows, cols = self.df.shape numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist() categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist() datetime_cols = self.df.select_dtypes(include=['datetime64', 'datetimetz']).columns.tolist() text_cols = [col for col in categorical_cols if self.df[col].str.len().mean() > 50] high_corr_pairs = [] if len(numeric_cols) > 1: corr_matrix = self.df[numeric_cols].corr().abs() upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)) high_corr_series = upper_tri.stack() high_corr_pairs = (high_corr_series[high_corr_series > Config.CORR_THRESHOLD].reset_index().rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}).to_dict('records')) return { 'shape': (rows, cols), 'columns': self.df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols, 'datetime_cols': datetime_cols, 'text_cols': text_cols, 'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}", 'total_missing': int(self.df.isnull().sum().sum()), 'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2), 'high_corr_pairs': high_corr_pairs, } def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: # (This method remains the same as v3.2) ... def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]: # (This method remains the same as v3.2) ... def generate_ai_narrative(self, api_key: str, context: Dict[str, Any]) -> str: """Generates a context-aware AI narrative.""" logging.info(f"Generating AI narrative with context: {context.keys()}") meta = self.metadata data_snippet_md = self.df.head(5).to_markdown(index=False) # Dynamically build the context section of the prompt context_prompt = "**DATASET CONTEXT:**\n" if context.get('is_timeseries'): context_prompt += "- **Analysis Mode:** Time-Series. Focus on trends, seasonality, and stationarity.\n" if context.get('has_text'): context_prompt += "- **Analysis Mode:** Text Analysis. Note potential for NLP tasks like sentiment analysis or topic modeling.\n" prompt = f""" As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive data discovery report. {context_prompt} - **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns. ... (rest of the prompt from v3.2) """ # (API call logic remains the same) ... return "AI Narrative Placeholder" # For brevity in this example # --- UI Creation (create_ui) --- # Contains all Gradio component definitions and their event listeners def create_ui(): """Defines and builds the new adaptive Gradio user interface.""" with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title=Config.APP_TITLE) as demo: # State object to hold the DataAnalyzer instance state_analyzer = gr.State() # --- Header & Main Controls --- gr.Markdown(f"

{Config.APP_TITLE}

") gr.Markdown("Upload your data (CSV, Excel) and let the AI build a custom analysis dashboard for you.") with gr.Row(): upload_button = gr.File(label="1. Upload Data File", file_types=[".csv", ".xlsx", ".xls"], scale=3) api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2) analyze_button = gr.Button("✨ Build My Dashboard", variant="primary", scale=1) # --- Tabbed Interface for Analysis Modules --- with gr.Tabs(): # Standard Tabs (Always Visible) with gr.Tab("🤖 AI Narrative"): ai_report_output = gr.Markdown("### Your AI-generated report will appear here...") download_report_button = gr.Button("⬇️ Download Full Report", visible=False) with gr.Tab("📋 Profile"): gr.Markdown("### **Detailed Data Profile**") profile_missing_df = gr.DataFrame(interactive=False, label="Missing Values") profile_numeric_df = gr.DataFrame(interactive=False, label="Numeric Stats") profile_categorical_df = gr.DataFrame(interactive=False, label="Categorical Stats") with gr.Tab("📊 Overview Visuals"): with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot() plot_correlation = gr.Plot() # Specialized, Initially Hidden Tabs with gr.Tab("⌛ Time-Series Analysis", visible=False) as tab_timeseries: gr.Markdown("### **Decompose and Analyze Time-Series Data**") with gr.Row(): dd_ts_date = gr.Dropdown(label="Select Date/Time Column", interactive=True) dd_ts_value = gr.Dropdown(label="Select Value Column", interactive=True) plot_ts_decomp = gr.Plot() md_ts_stats = gr.Markdown() with gr.Tab("📝 Text Analysis", visible=False) as tab_text: gr.Markdown("### **Visualize High-Frequency Words**") dd_text_col = gr.Dropdown(label="Select Text Column", interactive=True) html_word_cloud = gr.HTML() with gr.Tab("🧩 Clustering (K-Means)", visible=False) as tab_cluster: gr.Markdown("### **Discover Latent Groups with K-Means Clustering**") with gr.Row(): num_clusters = gr.Slider(minimum=2, maximum=10, value=4, step=1, label="Number of Clusters (K)", interactive=True) plot_cluster = gr.Plot() md_cluster_summary = gr.Markdown() # --- Event Listeners --- main_outputs = [ state_analyzer, ai_report_output, download_report_button, profile_missing_df, profile_numeric_df, profile_categorical_df, plot_types, plot_missing, plot_correlation, tab_timeseries, dd_ts_date, dd_ts_value, tab_text, dd_text_col, tab_cluster, num_clusters ] analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=main_outputs) # Listeners for specialized tabs ts_inputs = [state_analyzer, dd_ts_date, dd_ts_value] for dd in [dd_ts_date, dd_ts_value]: dd.change(fn=lambda a, d, v: analyze_time_series(a.df, d, v), inputs=ts_inputs, outputs=[plot_ts_decomp, md_ts_stats]) dd_text_col.change(fn=lambda a, t: generate_word_cloud(a.df, t), inputs=[state_analyzer, dd_text_col], outputs=html_word_cloud) cluster_inputs = [state_analyzer, num_clusters] num_clusters.change(fn=lambda a, k: perform_clustering(a.df, a.metadata['numeric_cols'], k), inputs=cluster_inputs, outputs=[plot_cluster, md_cluster_summary]) return demo # --- Main Application Logic & Orchestration --- def run_full_analysis(file_obj: gr.File, api_key: str) -> list: """The new adaptive analysis orchestrator.""" if file_obj is None: raise gr.Error("CRITICAL: No file uploaded.") if not api_key: raise gr.Error("CRITICAL: Gemini API key is missing.") try: logging.info(f"Processing uploaded file: {file_obj.name}") df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name) if len(df) > Config.MAX_UI_ROWS: logging.info(f"Large dataset detected ({len(df)} rows). Sampling to {Config.MAX_UI_ROWS} for UI.") df_display = df.sample(n=Config.MAX_UI_ROWS, random_state=42) else: df_display = df analyzer = DataAnalyzer(df_display) meta = analyzer.metadata # --- Base Analysis --- ai_context = {'is_timeseries': bool(meta['datetime_cols']), 'has_text': bool(meta['text_cols'])} # ai_report = analyzer.generate_ai_narrative(api_key, context=ai_context) # Commented out for speed ai_report = "AI Narrative generation is ready. Trigger on demand." # Placeholder missing_df, num_df, cat_df = analyzer.get_profiling_tables() fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals() # --- Adaptive Module Configuration --- show_ts_tab = gr.Tab(visible=bool(meta['datetime_cols'])) show_text_tab = gr.Tab(visible=bool(meta['text_cols'])) show_cluster_tab = gr.Tab(visible=len(meta['numeric_cols']) > 1) return [ analyzer, ai_report, gr.Button(visible=True), missing_df, num_df, cat_df, fig_types, fig_missing, fig_corr, show_ts_tab, gr.Dropdown(choices=meta['datetime_cols']), gr.Dropdown(choices=meta['numeric_cols']), show_text_tab, gr.Dropdown(choices=meta['text_cols']), show_cluster_tab, gr.Slider(visible=True) # or gr.Number ] except Exception as e: logging.error(f"A critical error occurred: {e}", exc_info=True) raise gr.Error(f"Analysis Failed! Error: {str(e)}") def perform_pre_flight_checks(): # (Same as v3.2) ... if __name__ == "__main__": # perform_pre_flight_checks() # Can be commented out during active dev app_instance = create_ui() app_instance.launch(debug=True, server_name="0.0.0.0")