# Odyssey - The AI Data Science Workspace # A demonstration of a state-of-the-art, AI-native analytic environment. import gradio as gr import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go import io, os, json, base64, logging, warnings, pickle, uuid from contextlib import redirect_stdout from datetime import datetime # ML & Preprocessing Imports from sklearn.model_selection import cross_val_score, train_test_split from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.metrics import roc_curve, auc, confusion_matrix, r2_score, mean_squared_error from sklearn.preprocessing import LabelEncoder from sklearn.impute import KNNImputer # --- Configuration --- warnings.filterwarnings('ignore') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # --- UI Theme & Icons --- THEME = gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate").set( body_background_fill="radial-gradient(circle, rgba(20,20,80,1) 0%, rgba(0,0,10,1) 100%);", block_label_background_fill="rgba(255,255,255,0.05)", block_background_fill="rgba(255,255,255,0.05)", button_primary_background_fill="linear-gradient(90deg, #6A11CB 0%, #2575FC 100%)", button_secondary_background_fill="linear-gradient(90deg, #556270 0%, #4ECDC4 100%)", color_accent_soft="rgba(255,255,255,0.2)" ) ICONS = {"overview": "๐Ÿ”ญ", "medic": "๐Ÿงช", "launchpad": "๐Ÿš€", "copilot": "๐Ÿ’ก", "export": "๐Ÿ“„"} # --- Core State & Project Management --- def init_state(): """Initializes a blank global state.""" return { "project_name": None, "df_original": None, "df_modified": None, "metadata": None, "insights": None, "chat_history": [], "dynamic_dashboards": {} } def save_project(state): """Saves the entire application state to a .osyssey file.""" if not state or not state.get("project_name"): return gr.update(value="Project needs a name to save.", interactive=True) filename = f"{state['project_name']}.odyssey" # Convert dataframes to pickle strings for serialization state_to_save = state.copy() if state_to_save['df_original'] is not None: state_to_save['df_original'] = state_to_save['df_original'].to_pickle() if state_to_save['df_modified'] is not None: state_to_save['df_modified'] = state_to_save['df_modified'].to_pickle() with open(filename, "wb") as f: pickle.dump(state_to_save, f) return gr.update(value=f"Project saved to {filename}", interactive=True) def load_project(file_obj): """Loads a .odyssey file into the application state.""" if not file_obj: return init_state() with open(file_obj.name, "rb") as f: loaded_state = pickle.load(f) # Unpickle dataframes if loaded_state['df_original'] is not None: loaded_state['df_original'] = pd.read_pickle(io.BytesIO(loaded_state['df_original'])) if loaded_state['df_modified'] is not None: loaded_state['df_modified'] = pd.read_pickle(io.BytesIO(loaded_state['df_modified'])) return loaded_state def prime_data(file_obj, project_name): """Main function to load a new CSV, analyze it, and set the initial state.""" if not file_obj: return init_state() df = pd.read_csv(file_obj.name) # Smart type conversion for col in df.select_dtypes(include=['object']).columns: try: df[col] = pd.to_datetime(df[col], errors='raise') except (ValueError, TypeError): if 0.5 > df[col].nunique() / len(df) > 0.0: df[col] = df[col].astype('category') metadata = extract_metadata(df) insights = run_helios_engine(df, metadata) return { "project_name": project_name or f"Project_{datetime.now().strftime('%Y%m%d_%H%M')}", "df_original": df, "df_modified": df.copy(), "metadata": metadata, "insights": insights, "chat_history": [], "dynamic_dashboards": {} } def extract_metadata(df): """Utility to get schema and column types.""" return { 'shape': df.shape, 'columns': df.columns.tolist(), 'numeric': df.select_dtypes(include=np.number).columns.tolist(), 'categorical': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime': df.select_dtypes(include='datetime').columns.tolist(), 'dtypes': df.dtypes.apply(lambda x: x.name).to_dict() } # --- Helios Overview Engine --- def run_helios_engine(df, metadata): """The proactive analysis engine.""" insights = {} # Missing Data missing = df.isnull().sum() insights['missing_data'] = missing[missing > 0].sort_values(ascending=False) # High Cardinality insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical'] if df[c].nunique() > 50} # Outlier Detection outliers = {} for col in metadata['numeric']: Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75) IQR = Q3 - Q1 count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum() if count > 0: outliers[col] = count insights['outliers'] = outliers # ML Target Suggestions suggestions = [] for col in metadata['categorical']: if df[col].nunique() == 2: suggestions.append(f"{col} (Classification)") for col in metadata['numeric']: if df[col].nunique() > 20: suggestions.append(f"{col} (Regression)") insights['ml_suggestions'] = suggestions return insights # --- Asclepius Data Lab Handlers --- def medic_preview_imputation(state, col, num_method, cat_method): if not col or col not in state['df_modified'].columns: return None df_mod = state['df_modified'].copy() if col in state['metadata']['numeric']: if num_method == 'KNN': imputer = KNNImputer(n_neighbors=5) df_mod[col] = imputer.fit_transform(df_mod[[col]]) else: value = df_mod[col].mean() if num_method == 'mean' else df_mod[col].median() df_mod[col].fillna(value, inplace=True) fig = go.Figure() fig.add_trace(go.Histogram(x=state['df_original'][col], name='Original', opacity=0.7)) fig.add_trace(go.Histogram(x=df_mod[col], name='Imputed', opacity=0.7)) fig.update_layout(barmode='overlay', title_text=f"Distribution for '{col}'", legend_title_text='Dataset') return fig elif col in state['metadata']['categorical']: if cat_method == "Create 'Missing' Category": df_mod[col] = df_mod[col].cat.add_categories("Missing").fillna("Missing") if hasattr(df_mod[col], 'cat') else df_mod[col].fillna("Missing") else: # Mode df_mod[col].fillna(df_mod[col].mode()[0], inplace=True) fig = go.Figure() fig.add_trace(go.Bar(x=state['df_original'][col].value_counts().index, y=state['df_original'][col].value_counts().values, name='Original')) fig.add_trace(go.Bar(x=df_mod[col].value_counts().index, y=df_mod[col].value_counts().values, name='Imputed')) return fig return None # --- Prometheus Launchpad Handlers --- def prometheus_run_model(state, target, features, model_name): if not target or not features: return None, None, "Select target and features." df = state['df_modified'].copy() df.dropna(subset=[target] + features, inplace=True) le_map = {} for col in [target] + features: if df[col].dtype.name in ['category', 'object']: le = LabelEncoder() df[col] = le.fit_transform(df[col]) le_map[col] = le X, y = df[features], df[target] problem_type = "Classification" if y.nunique() <= 10 else "Regression" MODELS = { "Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression}, "Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression} } if model_name not in MODELS[problem_type]: return None, None, "Invalid model for this problem type." model = MODELS[problem_type][model_name](random_state=42) if problem_type == "Classification": scores = cross_val_score(model, X, y, cv=5, scoring='accuracy') report = f"**Cross-Validated Accuracy:** {np.mean(scores):.3f} ยฑ {np.std(scores):.3f}" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model.fit(X_train, y_train) # ROC Curve y_prob = model.predict_proba(X_test)[:, 1] fpr, tpr, _ = roc_curve(y_test, y_prob) roc_auc = auc(fpr, tpr) fig1 = go.Figure(data=go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC curve (area = {roc_auc:.2f})')) fig1.add_scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(dash='dash'), name='Random Chance') fig1.update_layout(title="ROC Curve") # Feature Importance if hasattr(model, 'feature_importances_'): fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False) fig2 = px.bar(fi, title="Feature Importance") else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)") return fig1, fig2, report else: # Regression scores = cross_val_score(model, X, y, cv=5, scoring='r2') report = f"**Cross-Validated Rยฒ Score:** {np.mean(scores):.3f} ยฑ {np.std(scores):.3f}" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model.fit(X_train, y_train) preds = model.predict(X_test) # Residuals Plot residuals = y_test - preds fig1 = px.scatter(x=preds, y=residuals, title="Residuals vs. Predicted Plot", labels={'x': 'Predicted Values', 'y': 'Residuals'}) fig1.add_hline(y=0, line_dash="dash") # Feature Importance if hasattr(model, 'feature_importances_'): fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False) fig2 = px.bar(fi, title="Feature Importance") else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)") return fig1, fig2, report # --- Athena Co-pilot Handlers --- def athena_respond(user_message, history, state, api_key): # Main co-pilot logic pass # This would contain the full logic from previous examples def render_dynamic_dashboard(state, dashboard_id): """Renders a dynamically generated dashboard from the state.""" # This is a placeholder for the advanced dashboard rendering logic. # In a real scenario, this would execute the Gradio code string stored in state. if dashboard_id in state['dynamic_dashboards']: # This is where we would dynamically create the Gradio components # For this example, we'll return a placeholder return gr.Markdown(f"### Dashboard: {dashboard_id}\n(Dynamic rendering placeholder)") return gr.Markdown("Dashboard not found.") # --- UI Builder Functions --- def build_ui(): with gr.Blocks(theme=THEME, title="Odyssey AI Data Workspace") as demo: state = gr.State(init_state()) with gr.Row(): # Left Sidebar - Command Center with gr.Column(scale=1): gr.Markdown("# ๐Ÿฆ‰ Odyssey") with gr.Accordion("๐Ÿ“‚ Project", open=True): project_name_input = gr.Textbox(label="Project Name", value="New_Project") file_input = gr.File(label="Upload CSV", file_types=[".csv"]) with gr.Row(): save_btn = gr.Button("Save") load_btn = gr.UploadButton("Load .odyssey") project_status = gr.Markdown() # Navigation buttons overview_btn = gr.Button(f"{ICONS['overview']} Helios Overview") medic_btn = gr.Button(f"{ICONS['medic']} Asclepius Data Lab") launchpad_btn = gr.Button(f"{ICONS['launchpad']} Prometheus Launchpad") copilot_btn = gr.Button(f"{ICONS['copilot']} Athena Co-pilot") export_btn = gr.Button(f"{ICONS['export']} Export Report") # Global Info with gr.Accordion("Global Info", open=False): file_info_md = gr.Markdown("No file loaded.") # Right Panel - Main Workspace with gr.Column(scale=4): # --- Helios Overview Panel --- with gr.Column(visible=True) as overview_panel: gr.Markdown(f"# {ICONS['overview']} Helios Overview") gr.Markdown("A proactive, high-level summary of your dataset.") # Interactive dashboard components would go here helios_report_md = gr.Markdown("Upload data to begin analysis.") # --- Asclepius Data Lab Panel --- with gr.Column(visible=False) as medic_panel: gr.Markdown(f"# {ICONS['medic']} Asclepius Data Lab") gr.Markdown("Interactively clean and prepare your data.") # UI components for Data Medic medic_col_select = gr.Dropdown(label="Select Column to Clean") with gr.Row(): medic_num_method = gr.Radio(['mean', 'median', 'KNN'], label="Numeric Imputation", value='mean') medic_cat_method = gr.Radio(['mode', "Create 'Missing' Category"], label="Categorical Imputation", value='mode') medic_preview_plot = gr.Plot() medic_apply_btn = gr.Button("Apply Changes to Session") # --- Prometheus Launchpad Panel --- with gr.Column(visible=False) as launchpad_panel: gr.Markdown(f"# {ICONS['launchpad']} Prometheus Launchpad") gr.Markdown("Train, evaluate, and understand predictive models.") # UI components for Launchpad with gr.Row(): lp_target = gr.Dropdown(label="๐ŸŽฏ Target") lp_features = gr.Multiselect(label="โœจ Features") lp_model = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="๐Ÿง  Model") lp_run_btn = gr.Button("๐Ÿš€ Launch Model Training (with CV)") lp_report_md = gr.Markdown() with gr.Row(): lp_fig1 = gr.Plot() lp_fig2 = gr.Plot() # --- Athena Co-pilot Panel --- with gr.Column(visible=False) as copilot_panel: gr.Markdown(f"# {ICONS['copilot']} Athena Co-pilot") gr.Markdown("Your collaborative AI data scientist. Ask anything.") # Chatbot UI chatbot = gr.Chatbot(height=500) with gr.Accordion("AI Generated Dashboard", open=False) as dynamic_dash_accordion: dynamic_dash_output = gr.Group() # Placeholder for dynamic content chat_input = gr.Textbox(label="Your Request") chat_submit = gr.Button("Send", variant="primary") # --- Event Handling --- # Panel Navigation panels = [overview_panel, medic_panel, launchpad_panel, copilot_panel] def switch_panel(btn_idx): return [gr.update(visible=i == btn_idx) for i in range(len(panels))] overview_btn.click(lambda: switch_panel(0), None, panels) medic_btn.click(lambda: switch_panel(1), None, panels) launchpad_btn.click(lambda: switch_panel(2), None, panels) copilot_btn.click(lambda: switch_panel(3), None, panels) # File Upload Logic def on_upload(state, file, name): new_state = prime_data(file, name) # Update all UI components based on the new state helios_md = "No data loaded." if new_state.get('insights'): helios_md = f"### {ICONS['ml_suggestions']} ML Suggestions\n" + "\n".join([f"- `{s}`" for s in new_state['insights']['ml_suggestions']]) # ... Add more sections for a full report file_info = f"**File:** `{os.path.basename(file.name)}`\n\n**Shape:** `{new_state['metadata']['shape']}`" all_cols = new_state['metadata']['columns'] missing_cols = new_state['insights']['missing_data'].index.tolist() return new_state, helios_md, file_info, gr.update(choices=missing_cols), gr.update(choices=all_cols), gr.update(choices=all_cols) file_input.upload(on_upload, [state, file_input, project_name_input], [state, helios_report_md, file_info_md, medic_col_select, lp_target, lp_features]) # Project Management save_btn.click(save_project, state, project_status) # Asclepius Live Preview medic_col_select.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot) medic_num_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot) medic_cat_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot) # Prometheus Model Training lp_run_btn.click(prometheus_run_model, [state, lp_target, lp_features, lp_model], [lp_fig1, lp_fig2, lp_report_md]) return demo # --- Main Execution --- if __name__ == "__main__": app = build_ui() app.launch(debug=True)