# -*- coding: utf-8 -*- """ ๐Ÿš€ AutoEDA: AI-Powered Exploratory Data Analysis Tool An advanced Gradio application for automated exploratory data analysis, data profiling, and AI-driven insights using Google's Gemini API. Key Features: - Unified Analysis Workflow: Upload a CSV and get a full report across all tabs. - AI-Powered Storytelling: Generates a narrative overview, use cases, and findings. - Actionable AI Suggestions: Provides data cleaning recommendations. - Interactive Visualizations: Users can select columns to generate plots dynamically. - In-depth Profiling: Detailed statistics for numeric and categorical data. - Column-Level Drilldown: Inspect individual features in detail. - Report Download: Export the AI-generated analysis as a Markdown file. Author: World-Class MCP Expert Version: 2.0 """ from __future__ import annotations import warnings import logging import os import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import gradio as gr import google.generativeai as genai from typing import Optional, Dict, Any, Tuple, List from datetime import datetime # --- Configuration & Setup --- warnings.filterwarnings('ignore') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # --- Core Analysis Logic (The "Engine") --- class DataAnalyzer: """ A comprehensive class to encapsulate all data analysis operations. It holds the dataframe and provides methods for profiling, visualization, and AI-powered analysis, ensuring data is processed only once. """ def __init__(self, df: pd.DataFrame): if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.") self.df = df self._metadata: Optional[Dict[str, Any]] = None logging.info(f"DataAnalyzer initialized with DataFrame of shape: {self.df.shape}") @property def metadata(self) -> Dict[str, Any]: """Lazy-loads and caches dataset metadata.""" if self._metadata is None: self._metadata = self._extract_metadata() return self._metadata def _extract_metadata(self) -> Dict[str, Any]: """Extracts comprehensive metadata from the DataFrame.""" logging.info("Extracting dataset metadata...") rows, cols = self.df.shape numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist() categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist() datetime_cols = self.df.select_dtypes(include=['datetime64']).columns.tolist() # High correlation pairs high_corr_pairs = [] if len(numeric_cols) > 1: corr_matrix = self.df[numeric_cols].corr().abs() upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)) high_corr_pairs = ( upper_tri.stack() .reset_index() .rename(columns={'level_0': 'Var 1', 'level_1': 'Var 2', 0: 'Correlation'}) .query('Correlation > 0.7') .sort_values('Correlation', ascending=False) .head(5) .to_dict('records') ) return { 'shape': (rows, cols), 'columns': self.df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols, 'datetime_cols': datetime_cols, 'memory_usage': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f} MB", 'total_missing': int(self.df.isnull().sum().sum()), 'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 1), 'high_corr_pairs': high_corr_pairs, } def get_profiling_report(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: """Generates detailed data profiling tables.""" logging.info("Generating data profiling report.") # Missing data missing = self.df.isnull().sum() missing_df = pd.DataFrame({ 'Missing Values': missing, 'Percentage (%)': (missing / len(self.df) * 100).round(2) }).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Values', ascending=False) # Numeric stats numeric_stats_df = self.df[self.metadata['numeric_cols']].describe().round(3).T.reset_index().rename(columns={'index': 'Column'}) # Categorical stats cat_stats_list = [] for col in self.metadata['categorical_cols']: stats = { 'Column': col, 'Unique Values': self.df[col].nunique(), 'Top Value': self.df[col].mode().iloc[0] if not self.df[col].mode().empty else 'N/A', 'Frequency': self.df[col].value_counts().iloc[0] if not self.df[col].value_counts().empty else 0 } cat_stats_list.append(stats) categorical_stats_df = pd.DataFrame(cat_stats_list) return missing_df, numeric_stats_df, categorical_stats_df def get_initial_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]: """Creates a set of standard, non-interactive overview plots.""" logging.info("Generating initial overview visualizations.") # Data type distribution dtype_counts = self.df.dtypes.astype(str).value_counts() dtype_fig = px.pie( values=dtype_counts.values, names=dtype_counts.index, title="๐Ÿ“Š Data Type Distribution", hole=0.3 ) dtype_fig.update_traces(textposition='inside', textinfo='percent+label') # Missing data overview missing_fig = px.bar( x=self.df.isnull().sum(), y=self.df.columns, orientation='h', title="๐Ÿ•ณ๏ธ Missing Values Overview", labels={'x': 'Number of Missing Values', 'y': 'Column'}, ).update_yaxes(categoryorder="total ascending") # Correlation heatmap corr_fig = go.Figure() if len(self.metadata['numeric_cols']) > 1: corr_matrix = self.df[self.metadata['numeric_cols']].corr() corr_fig = px.imshow( corr_matrix, text_auto=".2f", aspect="auto", title="๐Ÿ”— Correlation Matrix (Numeric Features)", color_continuous_scale='RdBu_r' ) else: corr_fig.update_layout(title="๐Ÿ”— Correlation Matrix (Not enough numeric columns)") return dtype_fig, missing_fig, corr_fig def generate_ai_report(self, api_key: str) -> str: """Generates a full data story and analysis using the Gemini API.""" logging.info("Generating AI report with Gemini.") prompt = f""" As an expert data analyst and storyteller, your task is to analyze the provided dataset summary and generate a comprehensive, insightful, and accessible report. **Dataset Metadata:** - **Shape:** {self.metadata['shape'][0]} rows, {self.metadata['shape'][1]} columns. - **Column Names:** {', '.join(self.metadata['columns'])} - **Numeric Columns:** {', '.join(self.metadata['numeric_cols'])} - **Categorical Columns:** {', '.join(self.metadata['categorical_cols'])} - **Overall Data Quality:** {self.metadata['data_quality_score']}% - **Total Missing Values:** {self.metadata['total_missing']:,} - **Highly Correlated Pairs (>0.7):** {self.metadata['high_corr_pairs'] if self.metadata['high_corr_pairs'] else 'None detected.'} - **Sample Data (First 3 Rows):** {self.df.head(3).to_markdown()} **Your Report Structure (Use Markdown):** # ๐Ÿš€ AI-Powered Data Analysis Report ## ๐Ÿ“– 1. The Story of the Data * **What is this dataset about?** (Deduce the purpose and subject matter of the data.) * **What domain or industry does it belong to?** (e.g., E-commerce, Finance, Healthcare.) * **Who might use this data?** (e.g., Marketers, Scientists, Financial Analysts.) ## ๐ŸŽฏ 2. Key Insights & Interesting Findings - **Finding 1:** (Describe a significant pattern, trend, or anomaly. Use emojis to highlight.) - **Finding 2:** (Mention another interesting discovery, perhaps from correlations or categorical data.) - **Finding 3:** (Highlight a potential business or research opportunity revealed by the data.) ## ๐Ÿงน 3. Data Quality & Cleaning Recommendations * **Overall Quality Assessment:** (Comment on the {self.metadata['data_quality_score']}% score and {self.metadata['total_missing']} missing values.) * **Actionable Steps:** - **Recommendation 1:** (e.g., "For column 'X' with Y% missing values, consider imputation using the mean/median/mode.") - **Recommendation 2:** (e.g., "Columns 'A' and 'B' are highly correlated ({'e.g., ' + str(self.metadata['high_corr_pairs'][0]) if self.metadata['high_corr_pairs'] else ''}). Consider dropping one for modeling to avoid multicollinearity.") - **Recommendation 3:** (e.g., "Column 'Z' is categorical but stored as a number. Recommend converting it to a category type.") ## ๐Ÿ”ฎ 4. Potential Next Steps & Use Cases - **Analysis Idea 1:** (e.g., "Build a predictive model for customer churn.") - **Dashboard Idea 2:** (e.g., "Create a sales performance dashboard tracking KPIs over time.") - **Research Question 3:** (e.g., "Investigate the factors influencing employee attrition.") """ try: genai.configure(api_key=api_key) model = genai.GenerativeModel('gemini-1.5-flash-latest') response = model.generate_content(prompt) return response.text except Exception as e: logging.error(f"Gemini API call failed: {e}") return f"โŒ **Error generating AI report.**\n**Reason:** {str(e)}\n\nPlease check your API key and network connection. A fallback analysis could not be generated." # --- Gradio UI & Event Handlers --- def process_uploaded_file(file_obj: gr.File, api_key: str) -> tuple: """ Main function to process the uploaded file. It runs all analyses and returns updates for all UI components in one go. """ if file_obj is None: raise gr.Error("๐Ÿ“ Please upload a CSV file first!") if not api_key: raise gr.Error("๐Ÿ”‘ Please enter your Gemini API key!") try: df = pd.read_csv(file_obj.name) analyzer = DataAnalyzer(df) # Perform all analyses ai_report = analyzer.generate_ai_report(api_key) missing_df, num_stats, cat_stats = analyzer.get_profiling_report() dtype_fig, missing_fig, corr_fig = analyzer.get_initial_visuals() # Prepare UI updates all_cols = analyzer.metadata['columns'] num_cols = analyzer.metadata['numeric_cols'] cat_cols = analyzer.metadata['categorical_cols'] # The return dictionary maps UI components to their new values/configurations return { state_analyzer: analyzer, # Overview Tab md_ai_report: ai_report, btn_download_report: gr.Button(visible=True), # Profiling Tab df_missing_data: missing_df, df_numeric_stats: num_stats, df_categorical_stats: cat_stats, # Visuals Tab plot_dtype: dtype_fig, plot_missing: missing_fig, plot_corr: corr_fig, # Interactive Visuals Tab dd_hist_col: gr.Dropdown(choices=num_cols, label="Select Numeric Column for Histogram", visible=True), dd_scatter_x: gr.Dropdown(choices=num_cols, label="Select X-axis (Numeric)", visible=True), dd_scatter_y: gr.Dropdown(choices=num_cols, label="Select Y-axis (Numeric)", visible=True), dd_scatter_color: gr.Dropdown(choices=all_cols, label="Select Color (Categorical/Numeric)", visible=True), dd_box_cat: gr.Dropdown(choices=cat_cols, label="Select Categorical Column for Box Plot", visible=True), dd_box_num: gr.Dropdown(choices=num_cols, label="Select Numeric Column for Box Plot", visible=True), # Column Drilldown Tab dd_drilldown_col: gr.Dropdown(choices=all_cols, label="Select Column to Analyze", visible=True), } except Exception as e: logging.error(f"An error occurred during file processing: {e}", exc_info=True) raise gr.Error(f"Processing failed! Error: {str(e)}") # --- Interactive Plotting Functions --- def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure: if not col: return go.Figure() return px.histogram(analyzer.df, x=col, title=f"Distribution of {col}", marginal="box") def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col: str, color_col: str) -> go.Figure: if not x_col or not y_col: return go.Figure() return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"Scatter Plot: {x_col} vs. {y_col}") def create_boxplot(analyzer: DataAnalyzer, cat_col: str, num_col: str) -> go.Figure: if not cat_col or not num_col: return go.Figure() return px.box(analyzer.df, x=cat_col, y=num_col, title=f"Box Plot: {num_col} by {cat_col}") def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]: if not col: return "", go.Figure() col_series = analyzer.df[col] # Generate stats markdown stats_md = f"### ๐Ÿ”Ž Analysis of Column: `{col}`\n" stats_md += f"- **Data Type:** `{col_series.dtype}`\n" stats_md += f"- **Missing Values:** {col_series.isnull().sum()} ({col_series.isnull().mean():.2%})\n" stats_md += f"- **Unique Values:** {col_series.nunique()}\n" # Generate plot based on type fig = go.Figure() if pd.api.types.is_numeric_dtype(col_series): stats_md += f"- **Mean:** {col_series.mean():.2f}\n" stats_md += f"- **Median:** {col_series.median():.2f}\n" stats_md += f"- **Std Dev:** {col_series.std():.2f}\n" fig = create_histogram(analyzer, col) elif pd.api.types.is_categorical_dtype(col_series) or pd.api.types.is_object_dtype(col_series): top5 = col_series.value_counts().head(5) stats_md += f"- **Top 5 Values:**\n" for val, count in top5.items(): stats_md += f" - `{val}`: {count} times\n" fig = px.bar(top5, x=top5.index, y=top5.values, title=f"Top 5 Value Counts for {col}") fig.update_xaxes(title=col) fig.update_yaxes(title="Count") return stats_md, fig def download_report(analyzer: DataAnalyzer, ai_report_text: str) -> str: """Saves the AI report and basic stats to a markdown file for download.""" if not analyzer: return None filename = f"AI_Report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md" # Create the full report content full_report = f"# AutoEDA Analysis Report\n\n" full_report += f"**Date Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n" full_report += f"**Dataset Shape:** {analyzer.metadata['shape'][0]} rows x {analyzer.metadata['shape'][1]} columns\n\n" full_report += "---\n\n" full_report += ai_report_text with open(filename, "w", encoding="utf-8") as f: f.write(full_report) logging.info(f"Generated download report: {filename}") return filename # --- Gradio Interface Definition --- with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="๐Ÿš€ AutoEDA Pro") as demo: # State object to hold the DataAnalyzer instance state_analyzer = gr.State() gr.Markdown("# ๐Ÿš€ AutoEDA Pro: Your AI Data Science Assistant") gr.Markdown("Upload a CSV, enter your Gemini API key, and click 'Analyze!' to unlock a comprehensive, AI-powered report on your data.") with gr.Row(): with gr.Column(scale=2): file_input = gr.File(label="๐Ÿ“ Upload your CSV File", file_types=[".csv"]) with gr.Column(scale=2): api_key_input = gr.Textbox(label="๐Ÿ”‘ Google Gemini API Key", type="password", placeholder="Enter your key here...") with gr.Column(scale=1, min_width=150): analyze_btn = gr.Button("โœจ Analyze!", variant="primary", scale=1) with gr.Tabs(): with gr.Tab("๐Ÿค– AI Report & Overview"): md_ai_report = gr.Markdown("Your AI-generated report will appear here...") btn_download_report = gr.Button("โฌ‡๏ธ Download Full Report", visible=False) with gr.Tab("๐Ÿ“Š Data Profiling"): gr.Markdown("### Detailed Data Profile") gr.Markdown("**Missing Data Analysis**") df_missing_data = gr.DataFrame(interactive=False) gr.Markdown("**Numeric Feature Statistics**") df_numeric_stats = gr.DataFrame(interactive=False) gr.Markdown("**Categorical Feature Statistics**") df_categorical_stats = gr.DataFrame(interactive=False) with gr.Tab("๐Ÿ“ˆ Overview Visuals"): gr.Markdown("### At-a-Glance Visualizations") with gr.Row(): plot_dtype = gr.Plot() plot_missing = gr.Plot() with gr.Row(): plot_corr = gr.Plot() with gr.Tab("๐ŸŽจ Interactive Visuals"): gr.Markdown("### Explore Your Data Visually") with gr.Row(): with gr.Column(): dd_hist_col = gr.Dropdown(label="Select Column", visible=False) plot_hist = gr.Plot() with gr.Column(): dd_box_cat = gr.Dropdown(label="Select Category", visible=False) dd_box_num = gr.Dropdown(label="Select Value", visible=False) plot_box = gr.Plot() with gr.Row(): gr.Markdown("#### Scatter Plot Explorer") with gr.Row(): dd_scatter_x = gr.Dropdown(label="X-axis", visible=False) dd_scatter_y = gr.Dropdown(label="Y-axis", visible=False) dd_scatter_color = gr.Dropdown(label="Color", visible=False) plot_scatter = gr.Plot() with gr.Tab("๐Ÿ” Column Drilldown"): gr.Markdown("### Deep Dive into a Single Column") dd_drilldown_col = gr.Dropdown(label="Select Column", visible=False) with gr.Row(): md_drilldown_stats = gr.Markdown() plot_drilldown = gr.Plot() # --- Event Listeners --- # Main analysis trigger analyze_btn.click( fn=process_uploaded_file, inputs=[file_input, api_key_input], outputs=[ state_analyzer, md_ai_report, btn_download_report, df_missing_data, df_numeric_stats, df_categorical_stats, plot_dtype, plot_missing, plot_corr, dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_box_cat, dd_box_num, dd_drilldown_col ] ) # Interactive plot triggers dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_hist) dd_scatter_x.change(fn=create_scatterplot, inputs=[state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color], outputs=plot_scatter) dd_scatter_y.change(fn=create_scatterplot, inputs=[state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color], outputs=plot_scatter) dd_scatter_color.change(fn=create_scatterplot, inputs=[state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color], outputs=plot_scatter) dd_box_cat.change(fn=create_boxplot, inputs=[state_analyzer, dd_box_cat, dd_box_num], outputs=plot_box) dd_box_num.change(fn=create_boxplot, inputs=[state_analyzer, dd_box_cat, dd_box_num], outputs=plot_box) # Drilldown trigger dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown]) # Download trigger btn_download_report.click(fn=download_report, inputs=[state_analyzer, md_ai_report], outputs=gr.File(label="Download Report")) gr.Markdown("---") gr.Markdown("๐Ÿ’ก **Tip**: Get your free Google Gemini API key from [Google AI Studio](https://aistudio.google.com/app/apikey).") gr.Markdown("MCP Expert System v2.0 - Analysis Complete.") if __name__ == "__main__": demo.launch(debug=True)