# -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA - The AI-Augmented Data Discovery Platform # # SETUP: This application has external dependencies. Before running, install # all required packages using the requirements.txt file: # $ pip install -r requirements.txt # # AUTHOR: An MCP Expert in Data & AI Solutions # VERSION: 3.2 (Enterprise Edition) # LAST-UPDATE: 2023-10-28 (Fixed NameError scope issue in main analysis function) from __future__ import annotations import warnings import logging import os import sys import importlib.util from datetime import datetime from typing import Any, Dict, List, Optional, Tuple import gradio as gr import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import google.generativeai as genai # --- Configuration & Constants --- # (No changes here) logging.basicConfig( level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s' ) warnings.filterwarnings('ignore', category=FutureWarning) class Config: APP_TITLE = "🚀 CognitiveEDA: AI-Augmented Data Discovery Platform" GEMINI_MODEL = 'gemini-1.5-flash-latest' CORR_THRESHOLD = 0.75 TOP_N_CATEGORIES = 10 # --- Core Analysis Engine --- # (No changes here) class DataAnalyzer: def __init__(self, df: pd.DataFrame): if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.") self.df = df self._metadata: Optional[Dict[str, Any]] = None logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}") @property def metadata(self) -> Dict[str, Any]: if self._metadata is None: logging.info("First access to metadata, performing extraction...") self._metadata = self._extract_metadata() return self._metadata def _extract_metadata(self) -> Dict[str, Any]: rows, cols = self.df.shape numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist() categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist() high_corr_pairs = [] if len(numeric_cols) > 1: corr_matrix = self.df[numeric_cols].corr().abs() upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)) high_corr_series = upper_tri.stack() high_corr_pairs = ( high_corr_series[high_corr_series > Config.CORR_THRESHOLD] .reset_index() .rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}) .to_dict('records') ) return { 'shape': (rows, cols), 'columns': self.df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols, 'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}", 'total_missing': int(self.df.isnull().sum().sum()), 'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2), 'high_corr_pairs': high_corr_pairs, } def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: logging.info("Generating profiling tables for missing, numeric, and categorical data.") missing = self.df.isnull().sum() missing_df = pd.DataFrame({ 'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2) }).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False) numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'}) cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'}) return missing_df, numeric_stats_df, cat_stats_df def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]: logging.info("Generating overview visualizations (types, missing data, correlation).") meta = self.metadata dtype_counts = self.df.dtypes.astype(str).value_counts() fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="📊 Data Type Composition", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel) fig_types.update_traces(textposition='outside', textinfo='percent+label') missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0') fig_missing = px.bar(missing_df, x='index', y='count', title="🕳️ Missing Values Distribution", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending") fig_corr = go.Figure() if len(meta['numeric_cols']) > 1: corr_matrix = self.df[meta['numeric_cols']].corr() fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title=f"🔗 Correlation Matrix (Threshold > {Config.CORR_THRESHOLD})", color_continuous_scale='RdBu_r', zmin=-1, zmax=1) else: fig_corr.update_layout(title="🔗 Correlation Matrix (Insufficient Numeric Data)") return fig_types, fig_missing, fig_corr def generate_ai_narrative(self, api_key: str) -> str: logging.info("Generating AI narrative with the Gemini API.") meta = self.metadata data_snippet_md = self.df.head(5).to_markdown(index=False) prompt = f""" As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report. Analyze the following dataset context and produce a professional, insightful, and clear analysis in Markdown format. **DATASET CONTEXT:** - **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns. - **Column Schema:** - Numeric: {', '.join(meta['numeric_cols']) if meta['numeric_cols'] else 'None'} - Categorical: {', '.join(meta['categorical_cols']) if meta['categorical_cols'] else 'None'} - **Data Quality Score:** {meta['data_quality_score']}% (Percentage of non-missing cells) - **Total Missing Values:** {meta['total_missing']:,} - **High-Correlation Pairs (>{Config.CORR_THRESHOLD}):** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'} - **Data Snippet (First 5 Rows):** {data_snippet_md} **REQUIRED REPORT STRUCTURE (Strictly use this Markdown format):** ... """ try: genai.configure(api_key=api_key) model = genai.GenerativeModel(Config.GEMINI_MODEL) response = model.generate_content(prompt) return response.text except Exception as e: logging.error(f"Gemini API call failed: {e}", exc_info=True) error_message = ("❌ **AI Report Generation Failed**\n\n" f"**Error Details:** `{str(e)}`\n\n" "**Troubleshooting Steps:**\n" "1. Verify that your Google Gemini API key is correct and active.\n" "2. Check your network connection and firewall settings.\n" "3. Ensure the Gemini API is not experiencing an outage.") return error_message # --- Gradio UI & Event Handlers --- # (No changes here) def create_ui(): def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure: if not col or not analyzer: return go.Figure() return px.histogram(analyzer.df, x=col, title=f"Distribution of {col}", marginal="box", template="plotly_white") def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure: if not all([analyzer, x_col, y_col]): return go.Figure() return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"Scatter Plot: {x_col} vs. {y_col}", template="plotly_white", color_continuous_scale=px.colors.sequential.Viridis) def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]: if not col or not analyzer: return "", go.Figure() series = analyzer.df[col] stats_md = f"### 🔎 **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n" fig = go.Figure() if pd.api.types.is_numeric_dtype(series): stats_md += f"- **Mean:** `{series.mean():.3f}` | **Std Dev:** `{series.std():.3f}`\n- **Median:** `{series.median():.3f}` | **Min:** `{series.min():.3f}` | **Max:** `{series.max():.3f}`\n" fig = create_histogram(analyzer, col) else: top_n = series.value_counts().nlargest(Config.TOP_N_CATEGORIES) stats_md += f"- **Top Value:** `{top_n.index[0]}` ({top_n.iloc[0]} occurrences)\n" fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"Top {Config.TOP_N_CATEGORIES} Categories in `{col}`", labels={'y': col, 'x': 'Count'}, template="plotly_white").update_yaxes(categoryorder="total ascending") return stats_md, fig with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"), title=Config.APP_TITLE) as demo: state_analyzer = gr.State() gr.Markdown(f"
💡 Need an API key? Get one from Google AI Studio.
CognitiveEDA v3.2 | An MCP Expert System