# -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA - The Adaptive Intelligence Engine # # DESCRIPTION: A world-class data discovery platform that provides a complete suite # of standard EDA tools and intelligently unlocks specialized analysis # modules for Time-Series, Text, and Clustering, offering a truly # comprehensive and context-aware analytical experience. # # SETUP: $ pip install -r requirements.txt # # AUTHOR: An MCP Expert in Data & AI Solutions # VERSION: 4.2 (Bugfix Edition: AI Narrative Engine Restored) # LAST-UPDATE: 2023-10-29 (Fixed critical bug where AI was not being called) from __future__ import annotations import warnings import logging import os from datetime import datetime from typing import Any, Dict, Optional, Tuple import gradio as gr import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import google.generativeai as genai # --- Local Adaptive Modules (Requires analysis_modules.py and requirements.txt) --- from analysis_modules import analyze_time_series, generate_word_cloud, perform_clustering # --- Configuration & Setup --- logging.basicConfig(level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s') warnings.filterwarnings('ignore', category=FutureWarning) class Config: APP_TITLE = "🚀 CognitiveEDA: The Adaptive Intelligence Engine" GEMINI_MODEL = 'gemini-1.5-flash-latest' MAX_UI_ROWS = 50000 # --- Core Analysis Engine --- class DataAnalyzer: """The complete DataAnalyzer class, now with a fully functional AI engine.""" def __init__(self, df: pd.DataFrame): if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.") self.df = df self._metadata: Optional[Dict[str, Any]] = None logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}") @property def metadata(self) -> Dict[str, Any]: if self._metadata is None: self._metadata = self._extract_metadata() return self._metadata def _extract_metadata(self) -> Dict[str, Any]: rows, cols = self.df.shape numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist() categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist() datetime_cols = self.df.select_dtypes(include=['datetime64', 'datetimetz']).columns.tolist() text_cols = [col for col in categorical_cols if self.df[col].dropna().str.len().mean() > 50] high_corr_pairs = [] if len(numeric_cols) > 1: corr_matrix = self.df[numeric_cols].corr().abs() upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)) high_corr_series = upper_tri.stack() high_corr_pairs = (high_corr_series[high_corr_series > 0.75].reset_index().rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}).to_dict('records')) return { 'shape': (rows, cols), 'columns': self.df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols, 'datetime_cols': datetime_cols, 'text_cols': text_cols, 'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}", 'total_missing': int(self.df.isnull().sum().sum()), 'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2), 'high_corr_pairs': high_corr_pairs, } def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: missing = self.df.isnull().sum() missing_df = pd.DataFrame({'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)}).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False) numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'}) cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'}) return missing_df, numeric_stats_df, cat_stats_df def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]: meta = self.metadata dtype_counts = self.df.dtypes.astype(str).value_counts() fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="📊 Data Type Composition", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel) missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0') fig_missing = px.bar(missing_df, x='index', y='count', title="🕳️ Missing Values Distribution", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending") fig_corr = go.Figure() if len(meta['numeric_cols']) > 1: corr_matrix = self.df[meta['numeric_cols']].corr() fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title="🔗 Correlation Matrix", color_continuous_scale='RdBu_r', zmin=-1, zmax=1) return fig_types, fig_missing, fig_corr def generate_ai_narrative(self, api_key: str, context: Dict[str, Any]) -> str: """Generates a context-aware AI narrative using the Gemini API.""" logging.info(f"Generating AI narrative with context: {list(context.keys())}") meta = self.metadata data_snippet_md = self.df.head(5).to_markdown(index=False) context_prompt = "**PRIMARY ANALYSIS MODES:**\n" if context.get('is_timeseries'): context_prompt += "- **Time-Series Detected:** Focus on trends, seasonality, and stationarity. Suggest forecasting models.\n" if context.get('has_text'): context_prompt += "- **Long-Form Text Detected:** Note potential for NLP tasks like sentiment analysis or topic modeling.\n" if not context.get('is_timeseries') and not context.get('has_text'): context_prompt += "- **General Tabular Data:** Focus on distributions, correlations, and potential for classification/regression modeling.\n" prompt = f""" As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report in Markdown format. {context_prompt} **DATASET METADATA:** - **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns. - **Data Quality Score:** {meta['data_quality_score']}% - **Total Missing Values:** {meta['total_missing']:,} - **Highly Correlated Pairs:** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'} - **Data Snippet (First 5 Rows):** {data_snippet_md} **REQUIRED REPORT STRUCTURE:** # 🚀 AI Data Discovery Report ## 📄 1. Executive Summary * **Primary Objective:** (Deduce the likely purpose of this dataset. What problem could it solve?) * **Key Finding:** (State the single most interesting insight you've discovered.) * **Overall State:** (Briefly comment on the data's quality and readiness for analysis.) ## 🧐 2. Deep Dive & Quality Assessment * **Structural Profile:** (Describe the dataset's composition: numeric, categorical, text, time-series features.) * **Data Quality Audit:** (Elaborate on the quality score and missing values. Are they a major concern?) * **Redundancy Check:** (Comment on the detected high-correlation pairs and any risks.) ## 💡 3. Actionable Recommendations * **Data Cleaning:** (Provide a specific recommendation for handling missing data or outliers.) * **Feature Engineering:** (Suggest creating a new, valuable feature.) * **Next Analytical Steps:** (Propose a specific hypothesis to test or a suitable ML model to build.) """ try: genai.configure(api_key=api_key) model = genai.GenerativeModel(Config.GEMINI_MODEL) response = model.generate_content(prompt) if not response.parts: blocked_reason = response.prompt_feedback.block_reason.name if response.prompt_feedback else "Unknown" logging.warning(f"AI response blocked. Reason: {blocked_reason}") return f"❌ **AI Report Generation Blocked by Safety Settings**\n**Reason:** `{blocked_reason}`." return response.text except Exception as e: logging.error(f"Gemini API call failed: {e}", exc_info=True) return f"❌ **AI Report Generation Failed**\n**Error:** `{str(e)}`" # --- UI Creation --- def create_ui(): """Defines the complete, integrated Gradio user interface.""" def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure: if not col or not analyzer: return go.Figure() return px.histogram(analyzer.df, x=col, title=f"Distribution of {col}", marginal="box", template="plotly_white") def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure: if not all([analyzer, x_col, y_col]): return go.Figure() return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"Scatter Plot: {x_col} vs. {y_col}", template="plotly_white") def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]: if not col or not analyzer: return "", go.Figure() series = analyzer.df[col] stats_md = f"### 🔎 **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n" if pd.api.types.is_numeric_dtype(series): stats_md += f"- **Mean:** `{series.mean():.3f}` | **Median:** `{series.median():.3f}` | **Std Dev:** `{series.std():.3f}`" fig = create_histogram(analyzer, col) else: stats_md += f"- **Top Value:** `{series.value_counts().index[0]}`" top_n = series.value_counts().nlargest(10) fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"Top 10 Categories in `{col}`").update_yaxes(categoryorder="total ascending") return stats_md, fig with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title=Config.APP_TITLE) as demo: state_analyzer = gr.State() gr.Markdown(f"