# Odyssey - The AI Data Science Workspace # A state-of-the-art, AI-native analytic environment. # This script is a complete, self-contained Gradio application. import gradio as gr import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go import io, os, json, pickle, logging, warnings, uuid from contextlib import redirect_stdout from datetime import datetime # ML & Preprocessing Imports from sklearn.model_selection import cross_val_score, train_test_split from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.metrics import roc_curve, auc, confusion_matrix, r2_score, mean_squared_error from sklearn.preprocessing import LabelEncoder from sklearn.impute import KNNImputer # Optional: For AI features try: import google.generativeai as genai except ImportError: print("Warning: 'google-generativeai' not found. AI features will be disabled.") genai = None # --- Configuration --- warnings.filterwarnings('ignore') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # --- UI Theme & Icons --- THEME = gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate").set( body_background_fill="radial-gradient(circle, rgba(10,20,50,1) 0%, rgba(0,0,10,1) 100%);", block_label_background_fill="rgba(255,255,255,0.05)", block_background_fill="rgba(255,255,255,0.05)", button_primary_background_fill="linear-gradient(90deg, #6A11CB 0%, #2575FC 100%)", button_secondary_background_fill="linear-gradient(90deg, #556270 0%, #4ECDC4 100%)", color_accent_soft="rgba(255,255,255,0.2)" ) ICONS = {"overview": "๐Ÿ”ญ", "medic": "๐Ÿงช", "launchpad": "๐Ÿš€", "copilot": "๐Ÿ’ก", "export": "๐Ÿ“„"} # --- Helper Functions --- def safe_exec(code_string: str, local_vars: dict) -> tuple: """Safely execute a string of Python code and capture its output.""" output_buffer = io.StringIO() try: with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars) stdout = output_buffer.getvalue() fig = local_vars.get('fig') df_out = local_vars.get('df_result') return stdout, fig, df_out, None except Exception as e: return None, None, None, f"Execution Error: {str(e)}" # --- Core State & Project Management --- def init_state(): """Initializes a blank global state dictionary.""" return { "project_name": None, "df_original": None, "df_modified": None, "metadata": None, "insights": None, "chat_history": [] } def save_project(state): """Saves the entire application state to a .odyssey file.""" if not state or not state.get("project_name"): return gr.update(value="Project needs a name to save.", interactive=True) filename = f"{state['project_name']}.odyssey" with open(filename, "wb") as f: pickle.dump(state, f) return gr.update(value=f"โœ… Project saved to {filename}", interactive=True) def load_project(file_obj): """Loads a .odyssey file into the application state.""" if not file_obj: return init_state() with open(file_obj.name, "rb") as f: return pickle.load(f) def prime_data(file_obj, project_name): """Main function to load a new CSV, analyze it, and set the initial state.""" if not file_obj: return init_state() df = pd.read_csv(file_obj.name) for col in df.select_dtypes(include=['object']).columns: try: df[col] = pd.to_datetime(df[col], errors='raise') except (ValueError, TypeError): if 0.5 > df[col].nunique() / len(df) > 0.0: df[col] = df[col].astype('category') metadata = extract_metadata(df) insights = run_helios_engine(df, metadata) return { "project_name": project_name or f"Project_{datetime.now().strftime('%Y%m%d_%H%M')}", "df_original": df, "df_modified": df.copy(), "metadata": metadata, "insights": insights, "chat_history": [] } def extract_metadata(df): """Utility to get schema and column types.""" return { 'shape': df.shape, 'columns': df.columns.tolist(), 'numeric': df.select_dtypes(include=np.number).columns.tolist(), 'categorical': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime': df.select_dtypes(include='datetime').columns.tolist(), 'dtypes': df.dtypes.apply(lambda x: x.name).to_dict() } # --- Module-Specific Handlers --- def run_helios_engine(df, metadata): """The proactive analysis engine for the Helios Overview.""" insights = {} missing = df.isnull().sum() insights['missing_data'] = missing[missing > 0].sort_values(ascending=False) insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical'] if df[c].nunique() > 50} outliers = {} for col in metadata['numeric']: Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75) IQR = Q3 - Q1 count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum() if count > 0: outliers[col] = count insights['outliers'] = outliers suggestions = [] for col in metadata['categorical']: if df[col].nunique() == 2: suggestions.append(f"{col} (Classification)") for col in metadata['numeric']: if df[col].nunique() > 20: suggestions.append(f"{col} (Regression)") insights['ml_suggestions'] = suggestions return insights def prometheus_run_model(state, target, features, model_name): """Trains and evaluates a model in the Prometheus Launchpad.""" if not target or not features: return None, None, "Select target and features." df = state['df_modified'].copy() df.dropna(subset=[target] + features, inplace=True) for col in [target] + features: if df[col].dtype.name in ['category', 'object']: df[col] = LabelEncoder().fit_transform(df[col]) X, y = df[features], df[target] problem_type = "Classification" if y.nunique() <= 10 else "Regression" MODELS = {"Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression}, "Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression}} if model_name not in MODELS[problem_type]: return None, None, "Invalid model for this problem type." model = MODELS[problem_type][model_name](random_state=42) if problem_type == "Classification": scores = cross_val_score(model, X, y, cv=5, scoring='accuracy') report = f"**Cross-Validated Accuracy:** {np.mean(scores):.3f} ยฑ {np.std(scores):.3f}" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model.fit(X_train, y_train) y_prob = model.predict_proba(X_test)[:, 1] fpr, tpr, _ = roc_curve(y_test, y_prob) fig1 = go.Figure(data=go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC (AUC = {auc(fpr, tpr):.2f})')) fig1.add_scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(dash='dash'), name='Random') fig1.update_layout(title="ROC Curve") else: # Regression scores = cross_val_score(model, X, y, cv=5, scoring='r2') report = f"**Cross-Validated Rยฒ Score:** {np.mean(scores):.3f} ยฑ {np.std(scores):.3f}" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model.fit(X_train, y_train) preds = model.predict(X_test) residuals = y_test - preds fig1 = px.scatter(x=preds, y=residuals, title="Residuals vs. Predicted", labels={'x': 'Predicted', 'y': 'Residuals'}) fig1.add_hline(y=0, line_dash="dash") if hasattr(model, 'feature_importances_'): fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False) fig2 = px.bar(fi, title="Feature Importance") else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available)") return fig1, fig2, report def athena_respond(user_message, history, state, api_key): """Handles the chat interaction with the AI Co-pilot.""" if not genai: history.append((user_message, "Google AI library not installed. Cannot use Athena.")) return history, None, None, state if not api_key: history.append((user_message, "Please enter your Gemini API key to use Athena.")) return history, None, None, state history.append((user_message, None)) # Configure the API genai.configure(api_key=api_key) model = genai.GenerativeModel('gemini-1.5-flash') prompt = f""" You are 'Athena', an AI data scientist. Your goal is to help a user by writing and executing Python code on a pandas DataFrame named `df`. **DataFrame Info:** {state['df_modified'].info(verbose=False)} **Instructions:** 1. Analyze the user's request: '{user_message}'. 2. Formulate a plan (thought). 3. Write Python code to execute the plan. You can use `pandas as pd`, `numpy as np`, and `plotly.express as px`. 4. To show a plot, assign it to a variable `fig`. 5. To show a dataframe, assign it to a variable `df_result`. 6. Use `print()` for text output. 7. **NEVER** modify `df` in place. 8. Respond **ONLY** with a single, valid JSON object with keys "thought" and "code". **Your JSON Response:** """ try: response = model.generate_content(prompt) response_json = json.loads(response.text.strip().replace("```json", "").replace("```", "")) thought = response_json.get("thought", "Thinking...") code_to_run = response_json.get("code", "print('No code generated.')") bot_thinking = f"๐Ÿง  **Thinking:** *{thought}*" history[-1] = (user_message, bot_thinking) yield history, None, None, state local_vars = {'df': state['df_modified'], 'px': px, 'pd': pd, 'np': np} stdout, fig_result, df_result, error = safe_exec(code_to_run, local_vars) bot_response = bot_thinking + "\n\n---\n\n" if error: bot_response += f"๐Ÿ’ฅ **Error:**\n```\n{error}\n```" if stdout: bot_response += f"๐Ÿ“‹ **Output:**\n```\n{stdout}\n```" if not error and not stdout and not fig_result and not isinstance(df_result, pd.DataFrame): bot_response += "โœ… Code executed, but produced no direct output." history[-1] = (user_message, bot_response) state['chat_history'] = history # Persist chat history yield history, fig_result, df_result, state except Exception as e: error_msg = f"A critical error occurred with the AI model: {e}" history[-1] = (user_message, error_msg) yield history, None, None, state # --- UI Builder --- def build_ui(): """Constructs the entire Gradio application interface.""" with gr.Blocks(theme=THEME, title="Odyssey AI Data Workspace") as demo: state = gr.State(init_state()) with gr.Row(): # Left Sidebar - Command Center with gr.Column(scale=1): gr.Markdown("# ๐Ÿฆ‰ Odyssey") with gr.Accordion("๐Ÿ“‚ Project", open=True): project_name_input = gr.Textbox(label="Project Name", value="New_Project") file_input = gr.File(label="Upload CSV", file_types=[".csv"]) api_key_input = gr.Textbox(label="๐Ÿ”‘ Gemini API Key", type="password", placeholder="Enter key...") with gr.Row(): save_btn = gr.Button("Save") load_btn = gr.UploadButton("Load .odyssey") project_status = gr.Markdown() # Navigation buttons overview_btn = gr.Button(f"{ICONS['overview']} Helios Overview") launchpad_btn = gr.Button(f"{ICONS['launchpad']} Prometheus Launchpad") copilot_btn = gr.Button(f"{ICONS['copilot']} Athena Co-pilot") export_btn = gr.Button(f"{ICONS['export']} Export Report", visible=False) # Right Panel - Main Workspace with gr.Column(scale=4): # --- Helios Overview Panel --- with gr.Column(visible=True) as overview_panel: gr.Markdown(f"# {ICONS['overview']} Helios Overview") helios_report_md = gr.Markdown("Upload a CSV and provide a project name to begin your Odyssey.") # --- Prometheus Launchpad Panel --- with gr.Column(visible=False) as launchpad_panel: gr.Markdown(f"# {ICONS['launchpad']} Prometheus Launchpad") with gr.Row(): lp_target = gr.Dropdown(label="๐ŸŽฏ Target") # CORRECTED LINE: Use gr.Dropdown with multiselect=True lp_features = gr.Dropdown(label="โœจ Features", multiselect=True) lp_model = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="๐Ÿง  Model") lp_run_btn = gr.Button("๐Ÿš€ Launch Model Training (with CV)") lp_report_md = gr.Markdown() with gr.Row(): lp_fig1 = gr.Plot() lp_fig2 = gr.Plot() # --- Athena Co-pilot Panel --- with gr.Column(visible=False) as copilot_panel: gr.Markdown(f"# {ICONS['copilot']} Athena Co-pilot") chatbot = gr.Chatbot(height=500, label="Chat History") with gr.Accordion("AI Generated Results", open=True): copilot_fig_output = gr.Plot() copilot_df_output = gr.DataFrame(interactive=False) chat_input = gr.Textbox(label="Your Request", placeholder="e.g., 'What's the correlation between all numeric columns?'") chat_submit = gr.Button("Send", variant="primary") # --- Event Handling --- panels = [overview_panel, launchpad_panel, copilot_panel] def switch_panel(btn_idx): return [gr.update(visible=i == btn_idx) for i in range(len(panels))] overview_btn.click(lambda: switch_panel(0), None, panels) launchpad_btn.click(lambda: switch_panel(1), None, panels) copilot_btn.click(lambda: switch_panel(2), None, panels) def on_upload_or_load(state_data): """Unified function to update UI after data is loaded or a project is loaded.""" helios_md = "No data loaded." if state_data and state_data.get('insights'): insights = state_data['insights'] md = f"## ๐Ÿ”ญ Proactive Insights for `{state_data.get('project_name')}`\n" md += f"Dataset has **{state_data['metadata']['shape'][0]} rows** and **{state_data['metadata']['shape'][1]} columns**.\n\n" if suggestions := insights.get('ml_suggestions'): md += "### ๐Ÿ”ฎ Potential ML Targets\n" + "\n".join(f"- `{s}`" for s in suggestions) + "\n" if not insights.get('missing_data', pd.Series()).empty: md += "\n### ๐Ÿ’ง Missing Data\nFound missing values in these columns:\n" + insights['missing_data'].to_frame('Missing Count').to_markdown() + "\n" helios_md = md all_cols = state_data.get('metadata', {}).get('columns', []) return { state: state_data, helios_report_md: helios_md, lp_target: gr.update(choices=all_cols), lp_features: gr.update(choices=all_cols), chatbot: state_data.get('chat_history', []) } file_input.upload(prime_data, [file_input, project_name_input], state).then( on_upload_or_load, state, [state, helios_report_md, lp_target, lp_features, chatbot] ) load_btn.upload(load_project, load_btn, state).then( on_upload_or_load, state, [state, helios_report_md, lp_target, lp_features, chatbot] ) save_btn.click(save_project, state, project_status) lp_run_btn.click(prometheus_run_model, [state, lp_target, lp_features, lp_model], [lp_fig1, lp_fig2, lp_report_md]) chat_submit.click( athena_respond, [chat_input, chatbot, state, api_key_input], [chatbot, copilot_fig_output, copilot_df_output, state] ).then(lambda: "", outputs=chat_input) return demo # --- Main Execution --- if __name__ == "__main__": app = build_ui() app.launch(debug=True)