Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,149 @@
|
|
1 |
-
import
|
2 |
-
import requests
|
3 |
-
import feedparser
|
4 |
-
import networkx as nx
|
5 |
-
import gradio as gr
|
6 |
from transformers import pipeline
|
|
|
|
|
|
|
7 |
import openai
|
8 |
|
9 |
-
#
|
10 |
-
#
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
Returns:
|
18 |
-
List of dictionaries with keys: id, title, summary, published, authors.
|
19 |
-
"""
|
20 |
-
# arXiv API endpoint
|
21 |
-
base_url = "http://export.arxiv.org/api/query?"
|
22 |
-
# Construct query parameters: see arXiv API docs for details.
|
23 |
-
query = f"search_query=all:{search_query}&start=0&max_results={max_results}"
|
24 |
-
url = base_url + query
|
25 |
-
response = requests.get(url)
|
26 |
-
# Parse the Atom feed using feedparser
|
27 |
-
feed = feedparser.parse(response.text)
|
28 |
-
papers = []
|
29 |
-
for entry in feed.entries:
|
30 |
-
paper = {
|
31 |
-
"id": entry.id,
|
32 |
-
"title": entry.title.strip().replace("\n", " "),
|
33 |
-
"summary": entry.summary.strip().replace("\n", " "),
|
34 |
-
"published": entry.published,
|
35 |
-
"authors": ", ".join(author.name for author in entry.authors)
|
36 |
-
}
|
37 |
-
papers.append(paper)
|
38 |
-
return papers
|
39 |
-
|
40 |
-
# --------------------------
|
41 |
-
# 2. Build a Simple Knowledge Graph
|
42 |
-
# --------------------------
|
43 |
-
def build_knowledge_graph(papers):
|
44 |
-
"""
|
45 |
-
Create a directed knowledge graph from a list of papers.
|
46 |
-
Here, a simple simulation links papers in publication order.
|
47 |
-
In a real-world scenario, edges might be derived from citation relationships.
|
48 |
-
|
49 |
-
Each node holds paper metadata; edges are added sequentially for demonstration.
|
50 |
-
"""
|
51 |
-
G = nx.DiGraph()
|
52 |
-
for i, paper in enumerate(papers):
|
53 |
-
# Use a short identifier like 'P1', 'P2', etc.
|
54 |
-
node_id = f"P{i+1}"
|
55 |
-
G.add_node(node_id, title=paper["title"], summary=paper["summary"], published=paper["published"], authors=paper["authors"])
|
56 |
-
|
57 |
-
# Simulate citation relationships: for demo purposes, link each paper to the next one.
|
58 |
-
# The context is a simple statement; in practice, this could be extracted citation context.
|
59 |
-
for i in range(len(papers) - 1):
|
60 |
-
source = f"P{i+1}"
|
61 |
-
target = f"P{i+2}"
|
62 |
-
context = f"Paper '{papers[i]['title']}' builds on the ideas in '{papers[i+1]['title']}'."
|
63 |
-
G.add_edge(source, target, context=context)
|
64 |
-
return G
|
65 |
-
|
66 |
-
# --------------------------
|
67 |
-
# 3. Semantic Summarization on Citation Contexts
|
68 |
-
# --------------------------
|
69 |
-
# Initialize the Hugging Face summarizer (using an open-source model)
|
70 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
71 |
-
|
72 |
-
def summarize_context(text):
|
73 |
-
"""
|
74 |
-
Given a text (e.g. simulated citation context), return a semantic summary.
|
75 |
-
"""
|
76 |
-
if not text.strip():
|
77 |
-
return "No context available."
|
78 |
-
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
79 |
-
return summary[0]["summary_text"]
|
80 |
-
|
81 |
-
def enrich_graph_with_summaries(G):
|
82 |
-
"""
|
83 |
-
For each edge in the graph, compute a semantic summary of the citation context.
|
84 |
-
Store the result as an edge attribute.
|
85 |
-
"""
|
86 |
-
for u, v, data in G.edges(data=True):
|
87 |
-
context_text = data.get("context", "")
|
88 |
-
data["semantic_summary"] = summarize_context(context_text)
|
89 |
-
return G
|
90 |
-
|
91 |
-
# --------------------------
|
92 |
-
# 4. Generate Graph Summary Text
|
93 |
-
# --------------------------
|
94 |
-
def generate_graph_summary(G):
|
95 |
-
"""
|
96 |
-
Generate a text summary of the knowledge graph. For each edge, the summary will include:
|
97 |
-
"Paper 'source_title' cites 'target_title': <semantic summary>"
|
98 |
-
"""
|
99 |
-
summary_lines = []
|
100 |
-
for u, v, data in G.edges(data=True):
|
101 |
-
source_title = G.nodes[u]["title"]
|
102 |
-
target_title = G.nodes[v]["title"]
|
103 |
-
sem_summary = data.get("semantic_summary", "No summary available.")
|
104 |
-
line = f"Paper '{source_title}' cites '{target_title}': {sem_summary}"
|
105 |
-
summary_lines.append(line)
|
106 |
-
return "\n".join(summary_lines)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
Generate innovative research ideas using OpenAI's GPT model.
|
117 |
-
The prompt includes the semantic graph summary.
|
118 |
-
"""
|
119 |
-
prompt = f"""
|
120 |
-
Based on the following summary of research literature and their semantic relationships, propose innovative research ideas in the field of Artificial Intelligence:
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
126 |
response = openai.ChatCompletion.create(
|
127 |
model="gpt-3.5-turbo",
|
128 |
messages=[
|
129 |
-
{"role": "system", "content": "You are an expert AI
|
130 |
{"role": "user", "content": prompt}
|
131 |
],
|
132 |
-
|
133 |
-
temperature=0.7,
|
134 |
-
n=1,
|
135 |
)
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
"""
|
144 |
-
Main function called via the Gradio interface.
|
145 |
-
1. Fetches papers from arXiv (ensuring compliance with arXiv API Terms of Use).
|
146 |
-
2. Builds and enriches a simulated knowledge graph.
|
147 |
-
3. Generates a graph summary.
|
148 |
-
4. Produces innovative research ideas using OpenAI's API.
|
149 |
-
"""
|
150 |
-
# Step 1: Fetch papers from arXiv (by using their API and respecting their terms)
|
151 |
-
papers = fetch_arxiv_papers(search_query=search_query, max_results=5)
|
152 |
-
if not papers:
|
153 |
-
return "No papers were retrieved from arXiv. Please try a different query.", ""
|
154 |
-
|
155 |
-
# Step 2: Build the knowledge graph from the retrieved papers
|
156 |
-
G = build_knowledge_graph(papers)
|
157 |
-
# Step 3: Enrich the graph by summarizing the (simulated) citation contexts
|
158 |
-
G = enrich_graph_with_summaries(G)
|
159 |
-
# Step 4: Generate a text summary of the graph
|
160 |
-
graph_summary = generate_graph_summary(G)
|
161 |
-
# Step 5: Generate research ideas using OpenAI's API
|
162 |
-
research_ideas = generate_research_ideas(graph_summary)
|
163 |
-
|
164 |
-
# Build a result text that shows the graph summary along with the generated ideas.
|
165 |
-
return graph_summary, research_ideas
|
166 |
|
167 |
-
#
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
"
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
#
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
+
import networkx as nx
|
4 |
+
from pyvis.network import Network
|
5 |
+
import tempfile
|
6 |
import openai
|
7 |
|
8 |
+
# ---------------------------
|
9 |
+
# Model Loading & Caching
|
10 |
+
# ---------------------------
|
11 |
+
@st.cache_resource(show_spinner=False)
|
12 |
+
def load_summarizer():
|
13 |
+
# Load a summarization pipeline from Hugging Face (using facebook/bart-large-cnn)
|
14 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
15 |
+
return summarizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
@st.cache_resource(show_spinner=False)
|
18 |
+
def load_text_generator():
|
19 |
+
# For a quick demo, we use a smaller text generation model (e.g., GPT-2)
|
20 |
+
generator = pipeline("text-generation", model="gpt2")
|
21 |
+
return generator
|
22 |
|
23 |
+
summarizer = load_summarizer()
|
24 |
+
generator = load_text_generator()
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# ---------------------------
|
27 |
+
# OpenAI Based Idea Generation (Streaming)
|
28 |
+
# ---------------------------
|
29 |
+
def generate_ideas_with_openai(prompt, api_key):
|
30 |
+
openai.api_key = api_key
|
31 |
+
output_text = ""
|
32 |
+
# Create a chat completion request for streaming output
|
33 |
response = openai.ChatCompletion.create(
|
34 |
model="gpt-3.5-turbo",
|
35 |
messages=[
|
36 |
+
{"role": "system", "content": "You are an expert AI research assistant who generates innovative research ideas."},
|
37 |
{"role": "user", "content": prompt}
|
38 |
],
|
39 |
+
stream=True,
|
|
|
|
|
40 |
)
|
41 |
+
st_text = st.empty() # Placeholder for streaming output
|
42 |
+
for chunk in response:
|
43 |
+
if 'choices' in chunk and len(chunk['choices']) > 0:
|
44 |
+
delta = chunk['choices'][0]['delta']
|
45 |
+
if 'content' in delta:
|
46 |
+
text_piece = delta['content']
|
47 |
+
output_text += text_piece
|
48 |
+
st_text.text(output_text)
|
49 |
+
return output_text
|
50 |
+
|
51 |
+
def generate_ideas_with_hf(prompt):
|
52 |
+
# Use a Hugging Face text-generation pipeline for demo purposes.
|
53 |
+
# (This may be less creative compared to GPT-3.5)
|
54 |
+
results = generator(prompt, max_length=150, num_return_sequences=1)
|
55 |
+
idea_text = results[0]['generated_text']
|
56 |
+
return idea_text
|
57 |
+
|
58 |
+
# ---------------------------
|
59 |
+
# Streamlit App Layout
|
60 |
+
# ---------------------------
|
61 |
+
st.title("Graph of AI Ideas Application")
|
62 |
|
63 |
+
st.sidebar.header("Configuration")
|
64 |
+
generation_mode = st.sidebar.selectbox("Select Idea Generation Mode",
|
65 |
+
["Hugging Face Open Source", "OpenAI GPT-3.5 (Streaming)"])
|
66 |
+
openai_api_key = st.sidebar.text_input("OpenAI API Key (for GPT-3.5 Streaming)", type="password")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# --- Section 1: Research Paper Input and Idea Generation ---
|
69 |
+
st.header("Research Paper Input")
|
70 |
+
paper_abstract = st.text_area("Enter the research paper abstract:", height=200)
|
71 |
+
|
72 |
+
if st.button("Generate Ideas"):
|
73 |
+
if paper_abstract.strip():
|
74 |
+
st.subheader("Summarized Abstract")
|
75 |
+
# Summarize the paper abstract to capture essential points
|
76 |
+
summary = summarizer(paper_abstract, max_length=100, min_length=30, do_sample=False)
|
77 |
+
summary_text = summary[0]['summary_text']
|
78 |
+
st.write(summary_text)
|
79 |
+
|
80 |
+
st.subheader("Generated Research Ideas")
|
81 |
+
# Build a prompt that combines the abstract and its summary
|
82 |
+
prompt = (
|
83 |
+
f"Based on the following research paper abstract, generate innovative and promising research ideas for future work.\n\n"
|
84 |
+
f"Paper Abstract:\n{paper_abstract}\n\n"
|
85 |
+
f"Summary:\n{summary_text}\n\n"
|
86 |
+
f"Research Ideas:"
|
87 |
+
)
|
88 |
+
if generation_mode == "OpenAI GPT-3.5 (Streaming)":
|
89 |
+
if not openai_api_key.strip():
|
90 |
+
st.error("Please provide your OpenAI API Key in the sidebar.")
|
91 |
+
else:
|
92 |
+
with st.spinner("Generating ideas using OpenAI GPT-3.5..."):
|
93 |
+
ideas = generate_ideas_with_openai(prompt, openai_api_key)
|
94 |
+
st.write(ideas)
|
95 |
+
else:
|
96 |
+
with st.spinner("Generating ideas using Hugging Face open source model..."):
|
97 |
+
ideas = generate_ideas_with_hf(prompt)
|
98 |
+
st.write(ideas)
|
99 |
+
else:
|
100 |
+
st.error("Please enter a research paper abstract.")
|
101 |
+
|
102 |
+
# --- Section 2: Knowledge Graph Visualization ---
|
103 |
+
st.header("Knowledge Graph Visualization")
|
104 |
+
st.markdown(
|
105 |
+
"Simulate a knowledge graph by entering paper details and their citation relationships. "
|
106 |
+
"Enter details in CSV format: **PaperID,Title,CitedPaperIDs** (CitedPaperIDs separated by ';'). "
|
107 |
+
"Example:\n\n`1,Paper A,2;3`\n`2,Paper B,`\n`3,Paper C,2`"
|
108 |
)
|
109 |
+
papers_csv = st.text_area("Enter paper details in CSV format:", height=150)
|
110 |
+
|
111 |
+
if st.button("Generate Knowledge Graph"):
|
112 |
+
if papers_csv.strip():
|
113 |
+
import pandas as pd
|
114 |
+
from io import StringIO
|
115 |
|
116 |
+
# Process the CSV text input
|
117 |
+
data = []
|
118 |
+
for line in papers_csv.splitlines():
|
119 |
+
parts = line.split(',')
|
120 |
+
if len(parts) >= 3:
|
121 |
+
paper_id = parts[0].strip()
|
122 |
+
title = parts[1].strip()
|
123 |
+
cited = parts[2].strip()
|
124 |
+
cited_list = [c.strip() for c in cited.split(';') if c.strip()]
|
125 |
+
data.append({"paper_id": paper_id, "title": title, "cited": cited_list})
|
126 |
+
|
127 |
+
if data:
|
128 |
+
# Build a directed graph
|
129 |
+
G = nx.DiGraph()
|
130 |
+
for paper in data:
|
131 |
+
G.add_node(paper["paper_id"], title=paper["title"])
|
132 |
+
for cited in paper["cited"]:
|
133 |
+
G.add_edge(paper["paper_id"], cited)
|
134 |
+
|
135 |
+
st.subheader("Knowledge Graph")
|
136 |
+
# Create an interactive visualization using Pyvis
|
137 |
+
net = Network(height="500px", width="100%", directed=True)
|
138 |
+
for node, node_data in G.nodes(data=True):
|
139 |
+
net.add_node(node, label=node_data["title"])
|
140 |
+
for source, target in G.edges():
|
141 |
+
net.add_edge(source, target)
|
142 |
+
# Write and display the network as HTML in Streamlit
|
143 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".html")
|
144 |
+
net.write_html(temp_file.name)
|
145 |
+
with open(temp_file.name, 'r', encoding='utf-8') as f:
|
146 |
+
html_content = f.read()
|
147 |
+
st.components.v1.html(html_content, height=500)
|
148 |
+
else:
|
149 |
+
st.error("Please enter paper details for the knowledge graph.")
|