Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,14 +32,15 @@ generator = load_text_generator()
|
|
32 |
# Idea Generation Functions
|
33 |
# ---------------------------
|
34 |
def generate_ideas_with_hf(prompt):
|
35 |
-
# Use Hugging Face's text-generation pipeline
|
36 |
-
|
|
|
37 |
idea_text = results[0]['generated_text']
|
38 |
return idea_text
|
39 |
|
40 |
def generate_ideas_with_openai(prompt, api_key):
|
41 |
"""
|
42 |
-
Generates research ideas using OpenAI's GPT
|
43 |
This function uses the latest OpenAI SDK v1.0 and asynchronous API calls.
|
44 |
"""
|
45 |
openai.api_key = api_key
|
@@ -190,15 +191,14 @@ if st.button("Generate Knowledge Graph"):
|
|
190 |
# Build a directed graph using NetworkX
|
191 |
G = nx.DiGraph()
|
192 |
for paper in data:
|
193 |
-
# Ensure each node has a 'title' key,
|
194 |
-
G.add_node(paper["paper_id"], title=paper.get("title", ""))
|
195 |
for cited in paper["cited"]:
|
196 |
G.add_edge(paper["paper_id"], cited)
|
197 |
|
198 |
st.subheader("Knowledge Graph")
|
199 |
# Create an interactive visualization using Pyvis
|
200 |
net = Network(height="500px", width="100%", directed=True)
|
201 |
-
# Use get() to avoid KeyError and provide a fallback label.
|
202 |
for node, node_data in G.nodes(data=True):
|
203 |
net.add_node(node, label=node_data.get("title", str(node)))
|
204 |
for source, target in G.edges():
|
|
|
32 |
# Idea Generation Functions
|
33 |
# ---------------------------
|
34 |
def generate_ideas_with_hf(prompt):
|
35 |
+
# Use Hugging Face's text-generation pipeline.
|
36 |
+
# Instead of using max_length, we use max_new_tokens so that new tokens are generated.
|
37 |
+
results = generator(prompt, max_new_tokens=50, num_return_sequences=1)
|
38 |
idea_text = results[0]['generated_text']
|
39 |
return idea_text
|
40 |
|
41 |
def generate_ideas_with_openai(prompt, api_key):
|
42 |
"""
|
43 |
+
Generates research ideas using OpenAI's GPT-3.5 model with streaming.
|
44 |
This function uses the latest OpenAI SDK v1.0 and asynchronous API calls.
|
45 |
"""
|
46 |
openai.api_key = api_key
|
|
|
191 |
# Build a directed graph using NetworkX
|
192 |
G = nx.DiGraph()
|
193 |
for paper in data:
|
194 |
+
# Ensure each node has a 'title' key, using the node id as fallback.
|
195 |
+
G.add_node(paper["paper_id"], title=paper.get("title", str(paper["paper_id"])))
|
196 |
for cited in paper["cited"]:
|
197 |
G.add_edge(paper["paper_id"], cited)
|
198 |
|
199 |
st.subheader("Knowledge Graph")
|
200 |
# Create an interactive visualization using Pyvis
|
201 |
net = Network(height="500px", width="100%", directed=True)
|
|
|
202 |
for node, node_data in G.nodes(data=True):
|
203 |
net.add_node(node, label=node_data.get("title", str(node)))
|
204 |
for source, target in G.edges():
|