Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import feedparser
|
4 |
+
import networkx as nx
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import pipeline
|
7 |
+
import openai
|
8 |
+
|
9 |
+
# --------------------------
|
10 |
+
# 1. arXiv API Integration
|
11 |
+
# --------------------------
|
12 |
+
def fetch_arxiv_papers(search_query="Artificial Intelligence", max_results=5):
|
13 |
+
"""
|
14 |
+
Fetch paper metadata from the arXiv API using the legacy endpoint.
|
15 |
+
By using the arXiv APIs, you are agreeing to arXiv's Terms of Use.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
List of dictionaries with keys: id, title, summary, published, authors.
|
19 |
+
"""
|
20 |
+
# arXiv API endpoint
|
21 |
+
base_url = "http://export.arxiv.org/api/query?"
|
22 |
+
# Construct query parameters: see arXiv API docs for details.
|
23 |
+
query = f"search_query=all:{search_query}&start=0&max_results={max_results}"
|
24 |
+
url = base_url + query
|
25 |
+
response = requests.get(url)
|
26 |
+
# Parse the Atom feed using feedparser
|
27 |
+
feed = feedparser.parse(response.text)
|
28 |
+
papers = []
|
29 |
+
for entry in feed.entries:
|
30 |
+
paper = {
|
31 |
+
"id": entry.id,
|
32 |
+
"title": entry.title.strip().replace("\n", " "),
|
33 |
+
"summary": entry.summary.strip().replace("\n", " "),
|
34 |
+
"published": entry.published,
|
35 |
+
"authors": ", ".join(author.name for author in entry.authors)
|
36 |
+
}
|
37 |
+
papers.append(paper)
|
38 |
+
return papers
|
39 |
+
|
40 |
+
# --------------------------
|
41 |
+
# 2. Build a Simple Knowledge Graph
|
42 |
+
# --------------------------
|
43 |
+
def build_knowledge_graph(papers):
|
44 |
+
"""
|
45 |
+
Create a directed knowledge graph from a list of papers.
|
46 |
+
Here, a simple simulation links papers in publication order.
|
47 |
+
In a real-world scenario, edges might be derived from citation relationships.
|
48 |
+
|
49 |
+
Each node holds paper metadata; edges are added sequentially for demonstration.
|
50 |
+
"""
|
51 |
+
G = nx.DiGraph()
|
52 |
+
for i, paper in enumerate(papers):
|
53 |
+
# Use a short identifier like 'P1', 'P2', etc.
|
54 |
+
node_id = f"P{i+1}"
|
55 |
+
G.add_node(node_id, title=paper["title"], summary=paper["summary"], published=paper["published"], authors=paper["authors"])
|
56 |
+
|
57 |
+
# Simulate citation relationships: for demo purposes, link each paper to the next one.
|
58 |
+
# The context is a simple statement; in practice, this could be extracted citation context.
|
59 |
+
for i in range(len(papers) - 1):
|
60 |
+
source = f"P{i+1}"
|
61 |
+
target = f"P{i+2}"
|
62 |
+
context = f"Paper '{papers[i]['title']}' builds on the ideas in '{papers[i+1]['title']}'."
|
63 |
+
G.add_edge(source, target, context=context)
|
64 |
+
return G
|
65 |
+
|
66 |
+
# --------------------------
|
67 |
+
# 3. Semantic Summarization on Citation Contexts
|
68 |
+
# --------------------------
|
69 |
+
# Initialize the Hugging Face summarizer (using an open-source model)
|
70 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
71 |
+
|
72 |
+
def summarize_context(text):
|
73 |
+
"""
|
74 |
+
Given a text (e.g. simulated citation context), return a semantic summary.
|
75 |
+
"""
|
76 |
+
if not text.strip():
|
77 |
+
return "No context available."
|
78 |
+
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
79 |
+
return summary[0]["summary_text"]
|
80 |
+
|
81 |
+
def enrich_graph_with_summaries(G):
|
82 |
+
"""
|
83 |
+
For each edge in the graph, compute a semantic summary of the citation context.
|
84 |
+
Store the result as an edge attribute.
|
85 |
+
"""
|
86 |
+
for u, v, data in G.edges(data=True):
|
87 |
+
context_text = data.get("context", "")
|
88 |
+
data["semantic_summary"] = summarize_context(context_text)
|
89 |
+
return G
|
90 |
+
|
91 |
+
# --------------------------
|
92 |
+
# 4. Generate Graph Summary Text
|
93 |
+
# --------------------------
|
94 |
+
def generate_graph_summary(G):
|
95 |
+
"""
|
96 |
+
Generate a text summary of the knowledge graph. For each edge, the summary will include:
|
97 |
+
"Paper 'source_title' cites 'target_title': <semantic summary>"
|
98 |
+
"""
|
99 |
+
summary_lines = []
|
100 |
+
for u, v, data in G.edges(data=True):
|
101 |
+
source_title = G.nodes[u]["title"]
|
102 |
+
target_title = G.nodes[v]["title"]
|
103 |
+
sem_summary = data.get("semantic_summary", "No summary available.")
|
104 |
+
line = f"Paper '{source_title}' cites '{target_title}': {sem_summary}"
|
105 |
+
summary_lines.append(line)
|
106 |
+
return "\n".join(summary_lines)
|
107 |
+
|
108 |
+
# --------------------------
|
109 |
+
# 5. Research Idea Generation using OpenAI
|
110 |
+
# --------------------------
|
111 |
+
# Set your OpenAI API key from the environment (ensure OPENAI_API_KEY is set)
|
112 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
113 |
+
|
114 |
+
def generate_research_ideas(graph_summary_text):
|
115 |
+
"""
|
116 |
+
Generate innovative research ideas using OpenAI's GPT model.
|
117 |
+
The prompt includes the semantic graph summary.
|
118 |
+
"""
|
119 |
+
prompt = f"""
|
120 |
+
Based on the following summary of research literature and their semantic relationships, propose innovative research ideas in the field of Artificial Intelligence:
|
121 |
+
|
122 |
+
{graph_summary_text}
|
123 |
+
|
124 |
+
Research Ideas:
|
125 |
+
"""
|
126 |
+
response = openai.ChatCompletion.create(
|
127 |
+
model="gpt-3.5-turbo",
|
128 |
+
messages=[
|
129 |
+
{"role": "system", "content": "You are an expert AI researcher."},
|
130 |
+
{"role": "user", "content": prompt}
|
131 |
+
],
|
132 |
+
max_tokens=200,
|
133 |
+
temperature=0.7,
|
134 |
+
n=1,
|
135 |
+
)
|
136 |
+
ideas = response.choices[0].message.content.strip()
|
137 |
+
return ideas
|
138 |
+
|
139 |
+
# --------------------------
|
140 |
+
# 6. Main Pipeline (Tie Everything Together)
|
141 |
+
# --------------------------
|
142 |
+
def process_arxiv_and_generate(search_query):
|
143 |
+
"""
|
144 |
+
Main function called via the Gradio interface.
|
145 |
+
1. Fetches papers from arXiv (ensuring compliance with arXiv API Terms of Use).
|
146 |
+
2. Builds and enriches a simulated knowledge graph.
|
147 |
+
3. Generates a graph summary.
|
148 |
+
4. Produces innovative research ideas using OpenAI's API.
|
149 |
+
"""
|
150 |
+
# Step 1: Fetch papers from arXiv (by using their API and respecting their terms)
|
151 |
+
papers = fetch_arxiv_papers(search_query=search_query, max_results=5)
|
152 |
+
if not papers:
|
153 |
+
return "No papers were retrieved from arXiv. Please try a different query.", ""
|
154 |
+
|
155 |
+
# Step 2: Build the knowledge graph from the retrieved papers
|
156 |
+
G = build_knowledge_graph(papers)
|
157 |
+
# Step 3: Enrich the graph by summarizing the (simulated) citation contexts
|
158 |
+
G = enrich_graph_with_summaries(G)
|
159 |
+
# Step 4: Generate a text summary of the graph
|
160 |
+
graph_summary = generate_graph_summary(G)
|
161 |
+
# Step 5: Generate research ideas using OpenAI's API
|
162 |
+
research_ideas = generate_research_ideas(graph_summary)
|
163 |
+
|
164 |
+
# Build a result text that shows the graph summary along with the generated ideas.
|
165 |
+
return graph_summary, research_ideas
|
166 |
+
|
167 |
+
# --------------------------
|
168 |
+
# 7. Gradio Interface for Hugging Face Space
|
169 |
+
# --------------------------
|
170 |
+
demo = gr.Interface(
|
171 |
+
fn=process_arxiv_and_generate,
|
172 |
+
inputs=gr.components.Textbox(lines=1, label="Search Query for arXiv (e.g., 'Artificial Intelligence')", default="Artificial Intelligence"),
|
173 |
+
outputs=[
|
174 |
+
gr.outputs.Textbox(label="Knowledge Graph Summary"),
|
175 |
+
gr.outputs.Textbox(label="Generated Research Ideas")
|
176 |
+
],
|
177 |
+
title="Graph of AI Ideas: Leveraging Knowledge Graphs, arXiv Metadata & LLMs",
|
178 |
+
description=(
|
179 |
+
"This Hugging Face Space application retrieves recent arXiv e-prints based on your search query "
|
180 |
+
"and builds a simple knowledge graph (using simulated citation relationships) from the paper metadata. "
|
181 |
+
"A Hugging Face summarization model enriches these simulated citation contexts, and the graph summary "
|
182 |
+
"is then fed to OpenAI's GPT model to generate innovative AI research ideas.\n\n"
|
183 |
+
"By using this application, you agree to the arXiv API Terms of Use. Please review the arXiv API documentation "
|
184 |
+
"for guidelines on rate limits, attribution, and usage."
|
185 |
+
),
|
186 |
+
allow_flagging="never",
|
187 |
+
)
|
188 |
+
|
189 |
+
# Launch the Gradio interface (Hugging Face Spaces automatically runs this file)
|
190 |
+
demo.launch()
|