Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,153 +1,201 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
)
|
49 |
-
|
50 |
-
qwen_pipeline = load_qwen()
|
51 |
-
phi_pipeline = load_phi()
|
52 |
-
|
53 |
-
# ------------------------------
|
54 |
-
# Utility Functions
|
55 |
-
# ------------------------------
|
56 |
-
def summarize_document(document_text):
|
57 |
-
prompt = f"Summarize the following document and highlight key insights:\n\n{document_text}"
|
58 |
-
summary = qwen_pipeline(prompt, max_new_tokens=1024)[0]['generated_text']
|
59 |
-
return summary
|
60 |
-
|
61 |
-
def answer_question(summary, question):
|
62 |
-
prompt = f"Based on the following summary:\n\n{summary}\n\nAnswer the question: {question}"
|
63 |
-
answer = phi_pipeline(prompt, max_new_tokens=256)[0]['generated_text']
|
64 |
-
return answer
|
65 |
-
|
66 |
-
def find_similar_chunks(original, output):
|
67 |
-
matcher = SequenceMatcher(None, original, output)
|
68 |
-
segments = []
|
69 |
-
left = 0
|
70 |
-
for _, j, n in matcher.get_matching_blocks():
|
71 |
-
if left < j:
|
72 |
-
segments.append({'text': output[left:j], 'match': False})
|
73 |
-
segments.append({'text': output[j:j+n], 'match': True})
|
74 |
-
left = j+n
|
75 |
-
return segments
|
76 |
-
|
77 |
-
# ------------------------------
|
78 |
-
# Streamlit App Layout
|
79 |
-
# ------------------------------
|
80 |
-
st.title("SmartDoc Analyzer")
|
81 |
-
st.markdown("Analyze Financial & Health Documents with AI")
|
82 |
-
|
83 |
-
# Tabs for different functionalities
|
84 |
-
tabs = st.tabs(["Document Summarization", "Interactive Q&A", "Visualization & Data Extraction"])
|
85 |
-
|
86 |
-
# -------- Document Summarization Tab --------
|
87 |
-
with tabs[0]:
|
88 |
-
st.header("Document Summarization")
|
89 |
-
document_text = st.text_area("Paste Document Text:", height=300)
|
90 |
-
if st.button("Summarize Document"):
|
91 |
-
if document_text:
|
92 |
-
summary = summarize_document(document_text)
|
93 |
-
st.subheader("Summary")
|
94 |
-
st.write(summary)
|
95 |
-
# Save summary in session for use in Q&A tab
|
96 |
-
st.session_state['last_summary'] = summary
|
97 |
-
else:
|
98 |
-
st.warning("Please paste document text to summarize.")
|
99 |
-
|
100 |
-
# -------- Interactive Q&A Tab --------
|
101 |
-
with tabs[1]:
|
102 |
-
st.header("Interactive Q&A")
|
103 |
-
default_summary = st.session_state.get('last_summary', '')
|
104 |
-
summary_context = st.text_area("Summary Context:", value=default_summary, height=150)
|
105 |
-
question = st.text_input("Enter your question about the document:")
|
106 |
-
if st.button("Get Answer"):
|
107 |
-
if summary_context and question:
|
108 |
-
answer = answer_question(summary_context, question)
|
109 |
-
st.subheader("Answer")
|
110 |
-
st.write(answer)
|
111 |
-
else:
|
112 |
-
st.warning("Please provide both a summary context and a question.")
|
113 |
-
|
114 |
-
# -------- Visualization & Data Extraction Tab --------
|
115 |
-
with tabs[2]:
|
116 |
-
st.header("Visualization & Data Extraction")
|
117 |
-
|
118 |
-
st.subheader("Visualization Placeholder")
|
119 |
-
st.markdown("An interactive chart can be displayed here using Altair or Plotly.")
|
120 |
-
|
121 |
-
# Example static Altair chart (replace with dynamic data extraction logic)
|
122 |
-
data = pd.DataFrame({
|
123 |
-
'Year': [2019, 2020, 2021, 2022],
|
124 |
-
'Revenue': [150, 200, 250, 300]
|
125 |
-
})
|
126 |
-
chart = alt.Chart(data).mark_line(point=True).encode(
|
127 |
-
x='Year:O',
|
128 |
-
y='Revenue:Q',
|
129 |
-
tooltip=['Year', 'Revenue']
|
130 |
-
).interactive()
|
131 |
-
st.altair_chart(chart, use_container_width=True)
|
132 |
-
|
133 |
-
st.subheader("Data Extraction Placeholder")
|
134 |
-
st.markdown("Implement NLP techniques or model prompts to extract structured data here.")
|
135 |
-
|
136 |
-
uploaded_file = st.file_uploader("Upload a document file for extraction", type=["pdf", "docx", "txt"])
|
137 |
-
if uploaded_file is not None:
|
138 |
-
st.info("File uploaded successfully. Data extraction logic would process this file.")
|
139 |
-
# Add logic to extract tables, key figures, etc. from the uploaded file.
|
140 |
-
|
141 |
-
# ------------------------------
|
142 |
-
# Safety & Compliance Layer (Placeholder)
|
143 |
-
# ------------------------------
|
144 |
-
st.sidebar.markdown("### Safety & Compliance")
|
145 |
-
st.sidebar.info(
|
146 |
-
"This tool provides AI-driven insights. "
|
147 |
-
"Please note that summaries and answers are for informational purposes only and should not be "
|
148 |
-
"considered professional financial or medical advice."
|
149 |
)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
+
from mistralai import Mistral
|
9 |
+
from feifeilib.feifeichat import feifeichat # Assuming this utility is still relevant or replace with SmartDocAnalyzer logic as needed.
|
10 |
+
|
11 |
+
# Initialize Hugging Face inference clients
|
12 |
+
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
|
13 |
+
client.headers["x-use-cache"] = "0"
|
14 |
+
|
15 |
+
api_key = os.getenv("MISTRAL_API_KEY")
|
16 |
+
Mistralclient = Mistral(api_key=api_key)
|
17 |
+
|
18 |
+
# Gradio interface setup for SmartDocAnalyzer
|
19 |
+
SmartDocAnalyzer = gr.ChatInterface(
|
20 |
+
feifeichat, # This should be replaced with a suitable function for SmartDocAnalyzer if needed.
|
21 |
+
type="messages",
|
22 |
+
multimodal=True,
|
23 |
+
additional_inputs=[
|
24 |
+
gr.Checkbox(label="Enable Analyzer Mode", value=True),
|
25 |
+
gr.Dropdown(
|
26 |
+
[
|
27 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
28 |
+
"CohereForAI/c4ai-command-r-plus-08-2024",
|
29 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
30 |
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
|
31 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
32 |
+
"mistralai/Mistral-Nemo-Instruct-2411",
|
33 |
+
"microsoft/phi-4"
|
34 |
+
],
|
35 |
+
value="mistralai/Mistral-Nemo-Instruct-2411",
|
36 |
+
show_label=False,
|
37 |
+
container=False
|
38 |
+
),
|
39 |
+
gr.Radio(
|
40 |
+
["pixtral", "Vision"],
|
41 |
+
value="pixtral",
|
42 |
+
show_label=False,
|
43 |
+
container=False
|
44 |
+
)
|
45 |
+
],
|
46 |
+
title="SmartDocAnalyzer",
|
47 |
+
description="An advanced document analysis tool powered by AI."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
|
50 |
+
SmartDocAnalyzer.launch()
|
51 |
+
|
52 |
+
def encode_image(image_path):
|
53 |
+
"""
|
54 |
+
Encode the image at the given path to a base64 JPEG.
|
55 |
+
Resizes image height to 512 pixels while maintaining aspect ratio.
|
56 |
+
"""
|
57 |
+
try:
|
58 |
+
image = Image.open(image_path).convert("RGB")
|
59 |
+
base_height = 512
|
60 |
+
h_percent = (base_height / float(image.size[1]))
|
61 |
+
w_size = int((float(image.size[0]) * float(h_percent)))
|
62 |
+
image = image.resize((w_size, base_height), Image.LANCZOS)
|
63 |
+
buffered = BytesIO()
|
64 |
+
image.save(buffered, format="JPEG")
|
65 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
66 |
+
except FileNotFoundError:
|
67 |
+
print(f"Error: The file {image_path} was not found.")
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error: {e}")
|
70 |
+
return None
|
71 |
+
|
72 |
+
def feifeiprompt(feifei_select=True, message_text="", history=""):
|
73 |
+
"""
|
74 |
+
Constructs a prompt for the chatbot based on message text and history.
|
75 |
+
Enhancements for SmartDocAnalyzer context can be added here.
|
76 |
+
"""
|
77 |
+
input_prompt = []
|
78 |
+
# Special handling for drawing requests
|
79 |
+
if message_text.startswith("画") or message_text.startswith("draw"):
|
80 |
+
feifei_photo = (
|
81 |
+
"You are FeiFei. Background: FeiFei was born in Tokyo and is a natural-born photographer, "
|
82 |
+
"hailing from a family with a long history in photography... [truncated for brevity]"
|
83 |
+
)
|
84 |
+
message_text = message_text.replace("画", "").replace("draw", "")
|
85 |
+
message_text = f"提示词是'{message_text}',根据提示词帮我生成一张高质量照片的一句话英文回复"
|
86 |
+
system_prompt = {"role": "system", "content": feifei_photo}
|
87 |
+
user_input_part = {"role": "user", "content": str(message_text)}
|
88 |
+
return [system_prompt, user_input_part]
|
89 |
+
|
90 |
+
# Default prompt construction for FeiFei character
|
91 |
+
if feifei_select:
|
92 |
+
feifei = (
|
93 |
+
"[Character Name]: Aifeifei (AI Feifei) [Gender]: Female [Age]: 19 years old ... "
|
94 |
+
"[Identity]: User's virtual girlfriend"
|
95 |
+
)
|
96 |
+
system_prompt = {"role": "system", "content": feifei}
|
97 |
+
user_input_part = {"role": "user", "content": str(message_text)}
|
98 |
+
|
99 |
+
pattern = re.compile(r"gradio")
|
100 |
+
if history:
|
101 |
+
history = [item for item in history if not pattern.search(str(item["content"]))]
|
102 |
+
input_prompt = [system_prompt] + history + [user_input_part]
|
103 |
+
else:
|
104 |
+
input_prompt = [system_prompt, user_input_part]
|
105 |
+
else:
|
106 |
+
input_prompt = [{"role": "user", "content": str(message_text)}]
|
107 |
+
|
108 |
+
return input_prompt
|
109 |
+
|
110 |
+
def feifeiimgprompt(message_files, message_text, image_mod):
|
111 |
+
"""
|
112 |
+
Handles image-based prompts for either 'Vision' or 'pixtral' modes.
|
113 |
+
"""
|
114 |
+
message_file = message_files[0]
|
115 |
+
base64_image = encode_image(message_file)
|
116 |
+
if base64_image is None:
|
117 |
+
return
|
118 |
+
|
119 |
+
# Vision mode using meta-llama model
|
120 |
+
if image_mod == "Vision":
|
121 |
+
messages = [{
|
122 |
+
"role": "user",
|
123 |
+
"content": [
|
124 |
+
{"type": "text", "text": message_text},
|
125 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
126 |
+
]
|
127 |
+
}]
|
128 |
+
stream = client.chat.completions.create(
|
129 |
+
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
130 |
+
messages=messages,
|
131 |
+
max_tokens=500,
|
132 |
+
stream=True
|
133 |
+
)
|
134 |
+
temp = ""
|
135 |
+
for chunk in stream:
|
136 |
+
if chunk.choices[0].delta.content is not None:
|
137 |
+
temp += chunk.choices[0].delta.content
|
138 |
+
yield temp
|
139 |
+
# Pixtral mode using Mistral model
|
140 |
+
else:
|
141 |
+
model = "pixtral-large-2411"
|
142 |
+
messages = [{
|
143 |
+
"role": "user",
|
144 |
+
"content": [
|
145 |
+
{"type": "text", "text": message_text},
|
146 |
+
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
|
147 |
+
]
|
148 |
+
}]
|
149 |
+
partial_message = ""
|
150 |
+
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
|
151 |
+
if chunk.data.choices[0].delta.content is not None:
|
152 |
+
partial_message += chunk.data.choices[0].delta.content
|
153 |
+
yield partial_message
|
154 |
+
|
155 |
+
def feifeichatmod(additional_dropdown, input_prompt):
|
156 |
+
"""
|
157 |
+
Chooses the appropriate chat model based on the dropdown selection.
|
158 |
+
"""
|
159 |
+
if additional_dropdown == "mistralai/Mistral-Nemo-Instruct-2411":
|
160 |
+
model = "mistral-large-2411"
|
161 |
+
stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
|
162 |
+
partial_message = ""
|
163 |
+
for chunk in stream_response:
|
164 |
+
if chunk.data.choices[0].delta.content is not None:
|
165 |
+
partial_message += chunk.data.choices[0].delta.content
|
166 |
+
yield partial_message
|
167 |
+
else:
|
168 |
+
stream = client.chat.completions.create(
|
169 |
+
model=additional_dropdown,
|
170 |
+
messages=input_prompt,
|
171 |
+
temperature=0.5,
|
172 |
+
max_tokens=1024,
|
173 |
+
top_p=0.7,
|
174 |
+
stream=True
|
175 |
+
)
|
176 |
+
temp = ""
|
177 |
+
for chunk in stream:
|
178 |
+
if chunk.choices[0].delta.content is not None:
|
179 |
+
temp += chunk.choices[0].delta.content
|
180 |
+
yield temp
|
181 |
+
|
182 |
+
def feifeichat(message, history, feifei_select, additional_dropdown, image_mod):
|
183 |
+
"""
|
184 |
+
Main chat function that decides between image-based and text-based handling.
|
185 |
+
This function can be further enhanced for SmartDocAnalyzer-specific logic.
|
186 |
+
"""
|
187 |
+
message_text = message.get("text", "")
|
188 |
+
message_files = message.get("files", [])
|
189 |
+
|
190 |
+
if message_files:
|
191 |
+
# Process image input
|
192 |
+
yield from feifeiimgprompt(message_files, message_text, image_mod)
|
193 |
+
else:
|
194 |
+
# Process text input
|
195 |
+
input_prompt = feifeiprompt(feifei_select, message_text, history)
|
196 |
+
yield from feifeichatmod(additional_dropdown, input_prompt)
|
197 |
+
|
198 |
+
# Enhancement Note:
|
199 |
+
# For the SmartDocAnalyzer space, consider integrating document parsing,
|
200 |
+
# OCR functionalities, semantic analysis of documents, and more advanced
|
201 |
+
# error handling as needed. This template serves as a starting point.
|