Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,30 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import base64
|
3 |
import os
|
4 |
import re
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
from PIL import Image
|
|
|
|
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from mistralai import Mistral
|
9 |
-
from feifeilib.feifeichat import feifeichat # Assuming this utility is still relevant or replace with SmartDocAnalyzer logic as needed.
|
10 |
|
11 |
-
# Initialize
|
12 |
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
|
13 |
client.headers["x-use-cache"] = "0"
|
14 |
-
|
15 |
api_key = os.getenv("MISTRAL_API_KEY")
|
16 |
Mistralclient = Mistral(api_key=api_key)
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
additional_inputs=[
|
24 |
-
gr.Checkbox(label="Enable Analyzer Mode", value=True),
|
25 |
-
gr.Dropdown(
|
26 |
-
[
|
27 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
28 |
-
"CohereForAI/c4ai-command-r-plus-08-2024",
|
29 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
30 |
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
|
31 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
32 |
-
"mistralai/Mistral-Nemo-Instruct-2411",
|
33 |
-
"microsoft/phi-4"
|
34 |
-
],
|
35 |
-
value="mistralai/Mistral-Nemo-Instruct-2411",
|
36 |
-
show_label=False,
|
37 |
-
container=False
|
38 |
-
),
|
39 |
-
gr.Radio(
|
40 |
-
["pixtral", "Vision"],
|
41 |
-
value="pixtral",
|
42 |
-
show_label=False,
|
43 |
-
container=False
|
44 |
-
)
|
45 |
-
],
|
46 |
-
title="SmartDocAnalyzer",
|
47 |
-
description="An advanced document analysis tool powered by AI."
|
48 |
-
)
|
49 |
-
|
50 |
-
SmartDocAnalyzer.launch()
|
51 |
|
52 |
def encode_image(image_path):
|
53 |
-
"""
|
54 |
-
Encode the image at the given path to a base64 JPEG.
|
55 |
-
Resizes image height to 512 pixels while maintaining aspect ratio.
|
56 |
-
"""
|
57 |
try:
|
58 |
image = Image.open(image_path).convert("RGB")
|
59 |
base_height = 512
|
@@ -63,68 +34,109 @@ def encode_image(image_path):
|
|
63 |
buffered = BytesIO()
|
64 |
image.save(buffered, format="JPEG")
|
65 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
66 |
-
except FileNotFoundError:
|
67 |
-
print(f"Error: The file {image_path} was not found.")
|
68 |
except Exception as e:
|
69 |
-
print(f"
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
"""
|
74 |
-
|
75 |
-
Enhancements for SmartDocAnalyzer context can be added here.
|
76 |
"""
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
"hailing from a family with a long history in photography... [truncated for brevity]"
|
83 |
-
)
|
84 |
-
message_text = message_text.replace("画", "").replace("draw", "")
|
85 |
-
message_text = f"提示词是'{message_text}',根据提示词帮我生成一张高质量照片的一句话英文回复"
|
86 |
-
system_prompt = {"role": "system", "content": feifei_photo}
|
87 |
-
user_input_part = {"role": "user", "content": str(message_text)}
|
88 |
-
return [system_prompt, user_input_part]
|
89 |
-
|
90 |
-
# Default prompt construction for FeiFei character
|
91 |
-
if feifei_select:
|
92 |
-
feifei = (
|
93 |
-
"[Character Name]: Aifeifei (AI Feifei) [Gender]: Female [Age]: 19 years old ... "
|
94 |
-
"[Identity]: User's virtual girlfriend"
|
95 |
-
)
|
96 |
-
system_prompt = {"role": "system", "content": feifei}
|
97 |
-
user_input_part = {"role": "user", "content": str(message_text)}
|
98 |
-
|
99 |
-
pattern = re.compile(r"gradio")
|
100 |
-
if history:
|
101 |
-
history = [item for item in history if not pattern.search(str(item["content"]))]
|
102 |
-
input_prompt = [system_prompt] + history + [user_input_part]
|
103 |
-
else:
|
104 |
-
input_prompt = [system_prompt, user_input_part]
|
105 |
-
else:
|
106 |
-
input_prompt = [{"role": "user", "content": str(message_text)}]
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
def
|
111 |
"""
|
112 |
-
|
|
|
113 |
"""
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
if image_mod == "Vision":
|
121 |
-
messages = [{
|
122 |
-
"role": "user",
|
123 |
-
"content": [
|
124 |
-
{"type": "text", "text": message_text},
|
125 |
-
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
126 |
-
]
|
127 |
-
}]
|
128 |
stream = client.chat.completions.create(
|
129 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
130 |
messages=messages,
|
@@ -133,69 +145,68 @@ def feifeiimgprompt(message_files, message_text, image_mod):
|
|
133 |
)
|
134 |
temp = ""
|
135 |
for chunk in stream:
|
136 |
-
if chunk.choices[0].delta.content
|
137 |
temp += chunk.choices[0].delta.content
|
138 |
yield temp
|
139 |
-
# Pixtral mode using Mistral model
|
140 |
else:
|
141 |
model = "pixtral-large-2411"
|
142 |
-
messages = [{
|
143 |
-
"role": "user",
|
144 |
-
"content": [
|
145 |
-
{"type": "text", "text": message_text},
|
146 |
-
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
|
147 |
-
]
|
148 |
-
}]
|
149 |
partial_message = ""
|
150 |
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
|
151 |
-
if chunk.data.choices[0].delta.content
|
152 |
partial_message += chunk.data.choices[0].delta.content
|
153 |
yield partial_message
|
154 |
|
155 |
-
def
|
156 |
"""
|
157 |
-
|
158 |
-
"""
|
159 |
-
if additional_dropdown == "mistralai/Mistral-Nemo-Instruct-2411":
|
160 |
-
model = "mistral-large-2411"
|
161 |
-
stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
|
162 |
-
partial_message = ""
|
163 |
-
for chunk in stream_response:
|
164 |
-
if chunk.data.choices[0].delta.content is not None:
|
165 |
-
partial_message += chunk.data.choices[0].delta.content
|
166 |
-
yield partial_message
|
167 |
-
else:
|
168 |
-
stream = client.chat.completions.create(
|
169 |
-
model=additional_dropdown,
|
170 |
-
messages=input_prompt,
|
171 |
-
temperature=0.5,
|
172 |
-
max_tokens=1024,
|
173 |
-
top_p=0.7,
|
174 |
-
stream=True
|
175 |
-
)
|
176 |
-
temp = ""
|
177 |
-
for chunk in stream:
|
178 |
-
if chunk.choices[0].delta.content is not None:
|
179 |
-
temp += chunk.choices[0].delta.content
|
180 |
-
yield temp
|
181 |
-
|
182 |
-
def feifeichat(message, history, feifei_select, additional_dropdown, image_mod):
|
183 |
-
"""
|
184 |
-
Main chat function that decides between image-based and text-based handling.
|
185 |
-
This function can be further enhanced for SmartDocAnalyzer-specific logic.
|
186 |
"""
|
187 |
message_text = message.get("text", "")
|
188 |
message_files = message.get("files", [])
|
189 |
|
190 |
if message_files:
|
191 |
-
#
|
192 |
-
|
|
|
193 |
else:
|
194 |
-
# Process text
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
import base64
|
4 |
+
import gradio as gr
|
5 |
+
import pdfplumber # For PDF document parsing
|
6 |
+
import fitz # PyMuPDF for advanced PDF handling (alternative to pdfplumber)
|
7 |
+
import pytesseract # OCR for extracting text from images
|
8 |
from PIL import Image
|
9 |
+
from io import BytesIO
|
10 |
+
from transformers import pipeline # For semantic analysis tasks
|
11 |
from huggingface_hub import InferenceClient
|
12 |
from mistralai import Mistral
|
|
|
13 |
|
14 |
+
# Initialize inference clients for different models
|
15 |
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
|
16 |
client.headers["x-use-cache"] = "0"
|
|
|
17 |
api_key = os.getenv("MISTRAL_API_KEY")
|
18 |
Mistralclient = Mistral(api_key=api_key)
|
19 |
|
20 |
+
# Initialize semantic analysis pipelines using transformers (for local tasks)
|
21 |
+
# Example: summarization, sentiment-analysis, named-entity-recognition, etc.
|
22 |
+
summarizer = pipeline("summarization")
|
23 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
24 |
+
ner_tagger = pipeline("ner")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def encode_image(image_path):
|
27 |
+
"""Resizes and encodes an image to base64."""
|
|
|
|
|
|
|
28 |
try:
|
29 |
image = Image.open(image_path).convert("RGB")
|
30 |
base_height = 512
|
|
|
34 |
buffered = BytesIO()
|
35 |
image.save(buffered, format="JPEG")
|
36 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
|
37 |
except Exception as e:
|
38 |
+
print(f"Image encoding error: {e}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
def extract_text_from_document(file_path):
|
42 |
+
"""Extracts text from a PDF or image document."""
|
43 |
+
text = ""
|
44 |
+
# Try PDF parsing with pdfplumber
|
45 |
+
if file_path.lower().endswith(".pdf"):
|
46 |
+
try:
|
47 |
+
with pdfplumber.open(file_path) as pdf:
|
48 |
+
for page in pdf.pages:
|
49 |
+
text += page.extract_text() + "\n"
|
50 |
+
return text.strip()
|
51 |
+
except Exception as e:
|
52 |
+
print(f"PDF parsing error: {e}")
|
53 |
+
|
54 |
+
# If not PDF or parsing fails, attempt OCR on the first page of an image-based PDF or an image file.
|
55 |
+
try:
|
56 |
+
# Open the file as an image for OCR
|
57 |
+
image = Image.open(file_path)
|
58 |
+
text = pytesseract.image_to_string(image)
|
59 |
+
except Exception as e:
|
60 |
+
print(f"OCR error: {e}")
|
61 |
+
return text.strip()
|
62 |
|
63 |
+
def perform_semantic_analysis(text, analysis_type):
|
64 |
+
"""Applies semantic analysis tasks to the provided text."""
|
65 |
+
if analysis_type == "Summarization":
|
66 |
+
return summarizer(text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
67 |
+
elif analysis_type == "Sentiment Analysis":
|
68 |
+
return sentiment_analyzer(text)[0]
|
69 |
+
elif analysis_type == "Named Entity Recognition":
|
70 |
+
return ner_tagger(text)
|
71 |
+
# Add more analysis types as needed
|
72 |
+
return text
|
73 |
+
|
74 |
+
def process_text_input(message_text, history, model_choice, analysis_type):
|
75 |
"""
|
76 |
+
Process text-based inputs using selected model and apply semantic analysis if requested.
|
|
|
77 |
"""
|
78 |
+
# Optionally perform semantic analysis before sending to the model
|
79 |
+
if analysis_type and analysis_type != "None":
|
80 |
+
analysis_result = perform_semantic_analysis(message_text, analysis_type)
|
81 |
+
# Incorporate analysis_result into prompt or display separately
|
82 |
+
message_text += f"\n\n[Analysis Result]: {analysis_result}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Construct a prompt for model inference
|
85 |
+
input_prompt = [{"role": "user", "content": message_text}]
|
86 |
+
|
87 |
+
if model_choice == "mistralai/Mistral-Nemo-Instruct-2411":
|
88 |
+
model = "mistral-large-2411"
|
89 |
+
stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
|
90 |
+
for chunk in stream_response:
|
91 |
+
if chunk.data.choices[0].delta.content:
|
92 |
+
yield chunk.data.choices[0].delta.content
|
93 |
+
else:
|
94 |
+
stream = client.chat.completions.create(
|
95 |
+
model=model_choice,
|
96 |
+
messages=input_prompt,
|
97 |
+
temperature=0.5,
|
98 |
+
max_tokens=1024,
|
99 |
+
top_p=0.7,
|
100 |
+
stream=True
|
101 |
+
)
|
102 |
+
temp = ""
|
103 |
+
for chunk in stream:
|
104 |
+
if chunk.choices[0].delta.content:
|
105 |
+
temp += chunk.choices[0].delta.content
|
106 |
+
yield temp
|
107 |
|
108 |
+
def process_image_input(image_file, message_text, image_mod, model_choice, analysis_type):
|
109 |
"""
|
110 |
+
Process image-based inputs using selected model and mode.
|
111 |
+
Applies OCR if needed and semantic analysis.
|
112 |
"""
|
113 |
+
# Save uploaded image temporarily to extract text if necessary
|
114 |
+
temp_image_path = "temp_upload.jpg"
|
115 |
+
image_file.save(temp_image_path)
|
116 |
+
|
117 |
+
# Extract text from document/image using OCR if needed
|
118 |
+
extracted_text = extract_text_from_document(temp_image_path)
|
119 |
+
if extracted_text:
|
120 |
+
message_text += f"\n\n[Extracted Text]: {extracted_text}"
|
121 |
+
# Optionally perform semantic analysis on the extracted text
|
122 |
+
if analysis_type and analysis_type != "None":
|
123 |
+
analysis_result = perform_semantic_analysis(extracted_text, analysis_type)
|
124 |
+
message_text += f"\n\n[Analysis Result]: {analysis_result}"
|
125 |
+
|
126 |
+
base64_image = encode_image(temp_image_path)
|
127 |
+
if not base64_image:
|
128 |
+
yield "Failed to process image."
|
129 |
return
|
130 |
|
131 |
+
messages = [{
|
132 |
+
"role": "user",
|
133 |
+
"content": [
|
134 |
+
{"type": "text", "text": message_text},
|
135 |
+
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
|
136 |
+
]
|
137 |
+
}]
|
138 |
+
|
139 |
if image_mod == "Vision":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
stream = client.chat.completions.create(
|
141 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
142 |
messages=messages,
|
|
|
145 |
)
|
146 |
temp = ""
|
147 |
for chunk in stream:
|
148 |
+
if chunk.choices[0].delta.content:
|
149 |
temp += chunk.choices[0].delta.content
|
150 |
yield temp
|
|
|
151 |
else:
|
152 |
model = "pixtral-large-2411"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
partial_message = ""
|
154 |
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
|
155 |
+
if chunk.data.choices[0].delta.content:
|
156 |
partial_message += chunk.data.choices[0].delta.content
|
157 |
yield partial_message
|
158 |
|
159 |
+
def multimodal_response(message, history, analyzer_mode, model_choice, image_mod, analysis_type):
|
160 |
"""
|
161 |
+
Main response function that handles text and image inputs, applies parsing, OCR, and semantic analysis.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
"""
|
163 |
message_text = message.get("text", "")
|
164 |
message_files = message.get("files", [])
|
165 |
|
166 |
if message_files:
|
167 |
+
# If an image/document is uploaded, process it
|
168 |
+
image_file = message_files[0]
|
169 |
+
yield from process_image_input(image_file, message_text, image_mod, model_choice, analysis_type)
|
170 |
else:
|
171 |
+
# Process plain text inputs
|
172 |
+
yield from process_text_input(message_text, history, model_choice, analysis_type)
|
173 |
+
|
174 |
+
# Set up the Gradio interface with additional user customization options
|
175 |
+
MultiModalAnalyzer = gr.ChatInterface(
|
176 |
+
fn=multimodal_response,
|
177 |
+
type="messages",
|
178 |
+
multimodal=True,
|
179 |
+
additional_inputs=[
|
180 |
+
gr.Checkbox(label="Enable Analyzer Mode", value=True),
|
181 |
+
gr.Dropdown(
|
182 |
+
choices=[
|
183 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
184 |
+
"CohereForAI/c4ai-command-r-plus-08-2024",
|
185 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
186 |
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
|
187 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
188 |
+
"mistralai/Mistral-Nemo-Instruct-2411",
|
189 |
+
"microsoft/phi-4"
|
190 |
+
],
|
191 |
+
value="mistralai/Mistral-Nemo-Instruct-2411",
|
192 |
+
show_label=False,
|
193 |
+
container=False
|
194 |
+
),
|
195 |
+
gr.Radio(
|
196 |
+
choices=["pixtral", "Vision"],
|
197 |
+
value="pixtral",
|
198 |
+
show_label=False,
|
199 |
+
container=False
|
200 |
+
),
|
201 |
+
gr.Dropdown(
|
202 |
+
choices=["None", "Summarization", "Sentiment Analysis", "Named Entity Recognition"],
|
203 |
+
value="None",
|
204 |
+
label="Select Analysis Type",
|
205 |
+
container=False
|
206 |
+
)
|
207 |
+
],
|
208 |
+
title="MultiModal Analyzer",
|
209 |
+
description="Upload documents or images, select a model and analysis type to interact with your content."
|
210 |
+
)
|
211 |
+
|
212 |
+
MultiModalAnalyzer.launch()
|