StoryVerseWeaver / core /llm_clients.py
mgbam's picture
Update core/llm_clients.py
b967045 verified
raw
history blame
10.3 kB
# algoforge_prime/core/llm_clients.py
import os
import google.generativeai as genai
from huggingface_hub import InferenceClient
import time # For potential retries or delays
# --- Configuration ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
GEMINI_API_CONFIGURED = False
HF_API_CONFIGURED = False
hf_inference_client = None
google_gemini_model_instances = {} # To cache initialized Gemini model instances
# --- Initialization Function (to be called from app.py) ---
def initialize_all_clients():
global GEMINI_API_CONFIGURED, HF_API_CONFIGURED, hf_inference_client
# Google Gemini
if GOOGLE_API_KEY:
try:
genai.configure(api_key=GOOGLE_API_KEY)
GEMINI_API_CONFIGURED = True
print("INFO: llm_clients.py - Google Gemini API configured successfully.")
except Exception as e:
GEMINI_API_CONFIGURED = False # Ensure it's False on error
print(f"ERROR: llm_clients.py - Failed to configure Google Gemini API: {e}")
else:
print("WARNING: llm_clients.py - GOOGLE_API_KEY not found in environment variables.")
# Hugging Face
if HF_TOKEN:
try:
hf_inference_client = InferenceClient(token=HF_TOKEN)
HF_API_CONFIGURED = True
print("INFO: llm_clients.py - Hugging Face InferenceClient initialized successfully.")
except Exception as e:
HF_API_CONFIGURED = False # Ensure it's False on error
print(f"ERROR: llm_clients.py - Failed to initialize Hugging Face InferenceClient: {e}")
else:
print("WARNING: llm_clients.py - HF_TOKEN not found in environment variables.")
def _get_gemini_model_instance(model_id, system_instruction=None):
"""
Manages Gemini model instances.
Gemini's genai.GenerativeModel is fairly lightweight to create,
but caching can avoid repeated setup if system_instruction is complex or model loading is slow.
For now, creating a new one each time is fine unless performance becomes an issue.
"""
if not GEMINI_API_CONFIGURED:
raise ConnectionError("Google Gemini API not configured or configuration failed.")
try:
# For gemini-1.5 models, system_instruction is preferred.
# For older gemini-1.0, system instructions might need to be part of the 'contents'.
return genai.GenerativeModel(
model_name=model_id,
system_instruction=system_instruction
)
except Exception as e:
print(f"ERROR: llm_clients.py - Failed to get Gemini model instance for {model_id}: {e}")
raise
class LLMResponse:
def __init__(self, text=None, error=None, success=True, raw_response=None, model_id_used="unknown"):
self.text = text
self.error = error
self.success = success
self.raw_response = raw_response
self.model_id_used = model_id_used
def __str__(self):
if self.success:
return self.text if self.text is not None else ""
return f"ERROR (Model: {self.model_id_used}): {self.error}"
def call_huggingface_api(prompt_text, model_id, temperature=0.7, max_new_tokens=512, system_prompt_text=None):
if not HF_API_CONFIGURED or not hf_inference_client:
return LLMResponse(error="Hugging Face API not configured (HF_TOKEN missing or client init failed).", success=False, model_id_used=model_id)
full_prompt = prompt_text
# Llama-style system prompt formatting; adjust if using other HF model families
if system_prompt_text:
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt_text}\n<</SYS>>\n\n{prompt_text} [/INST]"
try:
use_sample = temperature > 0.001 # API might treat 0 as no sampling
raw_response = hf_inference_client.text_generation(
full_prompt, model=model_id, max_new_tokens=max_new_tokens,
temperature=temperature if use_sample else None, # None or omit if not sampling
do_sample=use_sample,
# top_p=0.9 if use_sample else None, # Optional
stream=False
)
return LLMResponse(text=raw_response, raw_response=raw_response, model_id_used=model_id)
except Exception as e:
error_msg = f"HF API Error ({model_id}): {type(e).__name__} - {str(e)}"
print(f"ERROR: llm_clients.py - {error_msg}")
return LLMResponse(error=error_msg, success=False, raw_response=e, model_id_used=model_id)
def call_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=768, system_prompt_text=None):
if not GEMINI_API_CONFIGURED:
return LLMResponse(error="Google Gemini API not configured (GOOGLE_API_KEY missing or config failed).", success=False, model_id_used=model_id)
try:
model_instance = _get_gemini_model_instance(model_id, system_instruction=system_prompt_text)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_new_tokens
# top_p=0.9 # Optional
)
# For Gemini, the main prompt goes directly to generate_content if system_instruction is used.
raw_response = model_instance.generate_content(
prompt_text, # User prompt
generation_config=generation_config,
stream=False
# safety_settings=[ # Optional: Adjust safety settings if needed, be very careful
# {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
# {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
# ]
)
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason:
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason
error_msg = f"Gemini API: Your prompt was blocked. Reason: {reason}. Try rephrasing."
print(f"WARNING: llm_clients.py - {error_msg}")
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
if not raw_response.candidates: # No candidates usually means it was blocked or an issue.
error_msg = "Gemini API: No candidates returned in response. Possibly blocked or internal error."
# Check prompt_feedback again, as it might be populated even if candidates are empty.
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason:
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason
error_msg = f"Gemini API: Your prompt was blocked (no candidates). Reason: {reason}. Try rephrasing."
print(f"WARNING: llm_clients.py - {error_msg}")
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
# Check the first candidate
candidate = raw_response.candidates[0]
if not candidate.content or not candidate.content.parts:
finish_reason = str(candidate.finish_reason).upper()
if finish_reason == "SAFETY":
error_msg = f"Gemini API: Response generation stopped by safety filters. Finish Reason: {finish_reason}."
elif finish_reason == "RECITATION":
error_msg = f"Gemini API: Response generation stopped due to recitation policy. Finish Reason: {finish_reason}."
elif finish_reason == "MAX_TOKENS":
error_msg = f"Gemini API: Response generation stopped due to max tokens. Consider increasing max_new_tokens. Finish Reason: {finish_reason}."
# In this case, there might still be partial text.
# For simplicity, we'll treat it as an incomplete generation here.
# You could choose to return partial text if desired.
# return LLMResponse(text="[PARTIAL RESPONSE - MAX TOKENS REACHED]", ..., model_id_used=model_id)
else:
error_msg = f"Gemini API: Empty response or no content parts. Finish Reason: {finish_reason}."
print(f"WARNING: llm_clients.py - {error_msg}")
# Try to get text even if finish_reason is not 'STOP' but not ideal
# This part might need refinement based on how you want to handle partial/stopped responses
partial_text = ""
if candidate.content and candidate.content.parts and candidate.content.parts[0].text:
partial_text = candidate.content.parts[0].text
if partial_text:
return LLMResponse(text=partial_text + f"\n[Note: Generation stopped due to {finish_reason}]", raw_response=raw_response, model_id_used=model_id)
else:
return LLMResponse(error=error_msg, success=False, raw_response=raw_response, model_id_used=model_id)
return LLMResponse(text=candidate.content.parts[0].text, raw_response=raw_response, model_id_used=model_id)
except Exception as e:
error_msg = f"Gemini API Call Error ({model_id}): {type(e).__name__} - {str(e)}"
# More specific error messages based on common Google API errors
if "API key not valid" in str(e) or "PERMISSION_DENIED" in str(e):
error_msg = f"Gemini API Error ({model_id}): API key invalid or permission denied. Check GOOGLE_API_KEY and ensure Gemini API is enabled. Original: {str(e)}"
elif "Could not find model" in str(e) or "ील नहीं मिला" in str(e): # Hindi for "model not found"
error_msg = f"Gemini API Error ({model_id}): Model ID '{model_id}' not found or inaccessible with your key. Original: {str(e)}"
elif "User location is not supported" in str(e):
error_msg = f"Gemini API Error ({model_id}): User location not supported for this model/API. Original: {str(e)}"
elif "Quota exceeded" in str(e):
error_msg = f"Gemini API Error ({model_id}): API quota exceeded. Please check your Google Cloud quotas. Original: {str(e)}"
print(f"ERROR: llm_clients.py - {error_msg}")
return LLMResponse(error=error_msg, success=False, raw_response=e, model_id_used=model_id)