StoryVerseWeaver / core /evaluation_engine.py
mgbam's picture
Update core/evaluation_engine.py
cbf1fef verified
raw
history blame
5.54 kB
# algoforge_prime/core/evaluation_engine.py
import random
import traceback
# --- Corrected Imports ---
from core.llm_clients import call_huggingface_api, call_gemini_api, LLMResponse
from prompts.system_prompts import get_system_prompt
from prompts.prompt_templates import format_critique_user_prompt
from .safe_executor import execute_python_code_with_tests, ExecutionResult # CORRECTED: Relative import
print("DEBUG: core.evaluation_engine - Imports successful")
# ... (rest of the EvaluationResultOutput class, _parse_llm_score, _placeholder_safe_python_execution,
# and evaluate_solution_candidate function as previously provided and corrected) ...
# Ensure all that logic is present here. For brevity, I am not pasting it all again.
# The key change is the import line for safe_executor above.
class EvaluationResultOutput:
def __init__(self, combined_score=0, llm_critique_text="", execution_details: ExecutionResult = None, raw_llm_response=None):
self.combined_score, self.llm_critique_text, self.execution_details, self.raw_llm_response = combined_score, llm_critique_text, execution_details, raw_llm_response
def get_display_critique(self):
# ... (implementation as before)
full_critique = self.llm_critique_text if self.llm_critique_text else "LLM critique failed/skipped."
if self.execution_details:
full_critique += f"\n\n**Automated Execution & Test Results (Simulated):**\n"
if self.execution_details.total_tests > 0: full_critique += f" Tests: {self.execution_details.passed_tests}/{self.execution_details.total_tests} passed.\n"
if self.execution_details.error: full_critique += f" Error: {self.execution_details.error}\n"
elif self.execution_details.output: full_critique += f" Output:\n```\n{self.execution_details.output[:500]}\n```\n"
full_critique += f" Time: {self.execution_details.execution_time:.4f}s\n"
return full_critique
def _parse_llm_score(llm_text_output: str) -> int:
# ... (implementation as before)
score = 0; import re
if not llm_text_output or not isinstance(llm_text_output, str): return score
match = re.search(r"Score:\s*(\d+)(?:\s*/\s*10)?", llm_text_output, re.IGNORECASE)
if match: score = max(1, min(int(match.group(1)), 10))
else: score = random.randint(3, 6)
return score
# _placeholder_safe_python_execution remains in safe_executor.py, it's imported.
def evaluate_solution_candidate(
solution_text: str, problem_description: str, problem_type: str,
user_provided_tests_code: str, llm_client_config: dict
) -> EvaluationResultOutput:
# ... (implementation as before, ensuring it calls the imported execute_python_code_with_tests) ...
print(f"DEBUG: evaluation_engine.py - Evaluating candidate. Problem type: {problem_type}")
llm_critique_text, llm_score, raw_llm_critique_resp, execution_result_obj = "LLM critique failed/skipped.", 0, None, None
if solution_text and not solution_text.startswith("ERROR"):
# ... (LLM critique call logic) ...
system_p_critique = get_system_prompt("critique_general")
user_p_critique = format_critique_user_prompt(problem_description, solution_text)
llm_response_obj = None
if llm_client_config["type"] == "hf": llm_response_obj = call_huggingface_api(user_p_critique, llm_client_config["model_id"], llm_client_config["temp"], llm_client_config["max_tokens"], system_p_critique)
elif llm_client_config["type"] == "google_gemini": llm_response_obj = call_gemini_api(user_p_critique, llm_client_config["model_id"], llm_client_config["temp"], llm_client_config["max_tokens"], system_p_critique)
if llm_response_obj:
raw_llm_critique_resp = llm_response_obj.raw_response
if llm_response_obj.success: llm_critique_text, llm_score = llm_response_obj.text, _parse_llm_score(llm_response_obj.text)
else: llm_critique_text, llm_score = f"Error during LLM critique: {llm_response_obj.error}", 0
elif solution_text and solution_text.startswith("ERROR"): llm_critique_text, llm_score = f"Solution was error: {solution_text}", 0
if "python" in problem_type.lower() and solution_text and not solution_text.startswith("ERROR") and user_provided_tests_code.strip():
execution_result_obj = execute_python_code_with_tests(solution_text, user_provided_tests_code, timeout_seconds=10)
elif "python" in problem_type.lower() and not user_provided_tests_code.strip():
execution_result_obj = ExecutionResult(success=True, output="No user tests provided.", total_tests=0)
combined_score = llm_score # Start with LLM score
if execution_result_obj and execution_result_obj.total_tests > 0: # Adjust based on tests
if not execution_result_obj.success or execution_result_obj.error: combined_score = max(1, llm_score - 5)
else:
pass_ratio = execution_result_obj.passed_tests / execution_result_obj.total_tests
if pass_ratio == 1.0: combined_score = min(10, llm_score + 2)
elif pass_ratio >= 0.75: combined_score = min(10, llm_score + 1)
elif pass_ratio < 0.25: combined_score = max(1, llm_score - 4)
else: combined_score = int(llm_score * (0.5 + 0.5 * pass_ratio))
combined_score = max(1, min(10, combined_score))
return EvaluationResultOutput(combined_score, llm_critique_text, execution_result_obj, raw_llm_critique_resp)
print("DEBUG: core.evaluation_engine - Module fully defined.")