StoryVerseWeaver / core /evaluation_engine.py
mgbam's picture
Update core/evaluation_engine.py
ebbb706 verified
# algoforge_prime/core/evaluation_engine.py
import random
import traceback
from core.llm_clients import call_huggingface_api, call_gemini_api, LLMResponse
from prompts.system_prompts import get_system_prompt
from prompts.prompt_templates import format_critique_user_prompt
from core.safe_executor import execute_python_code_with_tests, ExecutionResult, TestResult # Import new classes
print("DEBUG: core.evaluation_engine - Imports successful")
class EvaluationResultOutput:
def __init__(self, combined_score=0, llm_critique_text="", execution_details: ExecutionResult = None, raw_llm_response=None):
self.combined_score = combined_score
self.llm_critique_text = llm_critique_text
self.execution_details = execution_details
self.raw_llm_response = raw_llm_response
def get_display_critique(self) -> str:
"""Formats a comprehensive critique including LLM feedback and execution results."""
critique_parts = []
critique_parts.append(self.llm_critique_text if self.llm_critique_text else "LLM critique was not performed or failed.")
if self.execution_details:
exec_details = self.execution_details
critique_parts.append("\n\n**Automated Execution & Test Results (Simulated):**")
if exec_details.compilation_error:
critique_parts.append(f" Compilation Error: {exec_details.compilation_error}")
elif exec_details.timeout_error:
critique_parts.append(f" Execution Timed Out after {exec_details.execution_time:.2f}s.")
else:
if exec_details.total_tests > 0:
critique_parts.append(f" Tests Attempted: {exec_details.total_tests}")
critique_parts.append(f" Tests Passed: {exec_details.passed_tests}")
if exec_details.passed_tests < exec_details.total_tests:
critique_parts.append(" Failed Tests Details:")
for test_res in exec_details.individual_test_results:
if not test_res.passed:
critique_parts.append(f" - Test: `{test_res.test_string[:70]}...`")
if test_res.error_message:
critique_parts.append(f" Error: {test_res.error_message[:100]}...")
else: # Code ran, but no assert-based tests provided/found
critique_parts.append(" Code executed (no assert-based tests found/run).")
if exec_details.stdout:
critique_parts.append(f" Execution Stdout (truncated):\n```\n{exec_details.stdout[:300].strip()}\n```")
if exec_details.stderr and not any(not tr.passed for tr in exec_details.individual_test_results if tr.error_message): # Show general stderr if not already part of a test fail
critique_parts.append(f" Execution Stderr (general):\n```\n{exec_details.stderr[:300].strip()}\n```")
critique_parts.append(f" Simulated Execution Time: {exec_details.execution_time:.4f}s")
return "\n".join(critique_parts)
def _parse_llm_score(llm_text_output: str) -> int:
# ... (same as your last working version)
score = 0; import re
if not llm_text_output or not isinstance(llm_text_output, str): return score
match = re.search(r"Score:\s*(\d+)(?:\s*/\s*10)?", llm_text_output, re.IGNORECASE)
if match: score = max(1, min(int(match.group(1)), 10))
else:
print(f"INFO: evaluation_engine.py - 'Score: X/10' marker not found. Output: {llm_text_output[:100]}...")
score = random.randint(3, 6)
return score
def evaluate_solution_candidate(
solution_text: str,
problem_description: str,
problem_type: str,
user_provided_tests_code: str,
llm_client_config: dict
) -> EvaluationResultOutput:
print(f"DEBUG: evaluation_engine.py - Evaluating candidate. Problem type: {problem_type}")
llm_critique_text = "LLM critique generation failed or was skipped."
llm_score = 0
raw_llm_critique_resp = None
execution_result_obj = None # type: ExecutionResult
# 1. LLM-based Critique
if solution_text and not solution_text.startswith("ERROR"):
# ... (LLM critique call logic - same as before) ...
system_p_critique = get_system_prompt("critique_general")
user_p_critique = format_critique_user_prompt(problem_description, solution_text)
llm_response_obj = None
if llm_client_config["type"] == "hf": llm_response_obj = call_huggingface_api(user_p_critique, llm_client_config["model_id"], llm_client_config["temp"], llm_client_config["max_tokens"], system_p_critique)
elif llm_client_config["type"] == "google_gemini": llm_response_obj = call_gemini_api(user_p_critique, llm_client_config["model_id"], llm_client_config["temp"], llm_client_config["max_tokens"], system_p_critique)
if llm_response_obj:
raw_llm_critique_resp = llm_response_obj.raw_response
if llm_response_obj.success: llm_critique_text, llm_score = llm_response_obj.text, _parse_llm_score(llm_response_obj.text)
else: llm_critique_text, llm_score = f"Error during LLM critique: {llm_response_obj.error}", 0
elif solution_text and solution_text.startswith("ERROR"):
llm_critique_text, llm_score = f"Solution was error from Genesis: {solution_text}", 0
# 2. Code Execution
if "python" in problem_type.lower() and solution_text and not solution_text.startswith("ERROR"):
if user_provided_tests_code.strip():
print(f"INFO: evaluation_engine.py - Executing Python code candidate against user tests.")
execution_result_obj = execute_python_code_with_tests(solution_text, user_provided_tests_code, timeout_seconds=10)
else:
print(f"INFO: evaluation_engine.py - Executing Python code candidate (no tests provided).")
execution_result_obj = execute_python_code_with_tests(solution_text, "", timeout_seconds=5) # Execute code even if no tests
print(f"INFO: evaluation_engine.py - Execution result: {execution_result_obj}")
elif "python" in problem_type.lower() and not user_provided_tests_code.strip() and solution_text and not solution_text.startswith("ERROR"):
# Case where it's python but no tests - still might want to run to catch basic runtime/compile errors
execution_result_obj = execute_python_code_with_tests(solution_text, "", timeout_seconds=5)
# 3. Combine Scores into a Final Score
combined_score = llm_score
if execution_result_obj:
if execution_result_obj.compilation_error or execution_result_obj.timeout_error or (not execution_result_obj.success and execution_result_obj.stderr and not execution_result_obj.individual_test_results) :
combined_score = 1 # Catastrophic failure
elif execution_result_obj.total_tests > 0:
pass_ratio = execution_result_obj.passed_tests / execution_result_obj.total_tests
if pass_ratio == 1.0: combined_score = min(10, llm_score + 3) # Strong bonus for all tests passing
elif pass_ratio >= 0.8: combined_score = min(10, llm_score + 1)
elif pass_ratio < 0.2: combined_score = max(1, llm_score - 6) # Heavy penalty
elif pass_ratio < 0.5: combined_score = max(1, llm_score - 4)
else: combined_score = int(llm_score * (0.4 + 0.6 * pass_ratio)) # Weighted more by tests
elif not execution_result_obj.success and execution_result_obj.error : # General runtime error without tests
combined_score = max(1, llm_score - 4)
combined_score = max(1, min(10, combined_score))
print(f"DEBUG: evaluation_engine.py - Evaluation complete. Combined Score: {combined_score}")
return EvaluationResultOutput(
combined_score=combined_score,
llm_critique_text=llm_critique_text,
execution_details=execution_result_obj,
raw_llm_response=raw_llm_critique_resp
)
print("DEBUG: core.evaluation_engine - Module fully defined.")