StoryVerseWeaver / core /image_services.py
mgbam's picture
Update core/image_services.py
e6e5425 verified
# storyverse_weaver/core/image_services.py
import os
import requests
import base64
from io import BytesIO
from PIL import Image
from huggingface_hub import InferenceClient # For HF fallback
from openai import OpenAI # For DALL-E
# --- API Key Configuration ---
OPENAI_API_KEY = os.getenv("STORYVERSE_OPENAI_API_KEY") # Primary for DALL-E
HF_TOKEN = os.getenv("STORYVERSE_HF_TOKEN") # For fallback & text
OPENAI_DALLE_CONFIGURED = False
HF_IMAGE_API_CONFIGURED = False
hf_inference_image_client = None
openai_client = None
class ImageGenResponse:
def __init__(self, image: Image.Image = None, image_url: str = None,
error: str = None, success: bool = True,
provider: str = "Unknown Image Gen", model_id_used: str = None):
self.image = image
self.image_url = image_url
self.error = error
self.success = success
self.provider = provider
self.model_id_used = model_id_used
def __str__(self):
status = "Success" if self.success else "Failed"
details = f"Image URL: {self.image_url}" if self.image_url else ("Image data present" if self.image else "No image data")
if self.error:
details = f"Error: {self.error}"
return f"ImageGenResponse(Provider: {self.provider}, Model: {self.model_id_used or 'N/A'}, Status: {status}, Details: {details})"
def initialize_image_llms(): # "LLMs" here is a bit of a misnomer for image services, but kept for consistency
global OPENAI_DALLE_CONFIGURED, HF_IMAGE_API_CONFIGURED, hf_inference_image_client, openai_client, OPENAI_API_KEY, HF_TOKEN
# Ensure keys are fetched within this function's scope if not already module-level and populated
OPENAI_API_KEY = os.getenv("STORYVERSE_OPENAI_API_KEY")
HF_TOKEN = os.getenv("STORYVERSE_HF_TOKEN")
print("INFO: image_services.py - Initializing Image Generation services (DALL-E primary, HF fallback)...")
# OpenAI DALL-E (Primary)
if OPENAI_API_KEY and OPENAI_API_KEY.strip():
print("INFO: image_services.py - STORYVERSE_OPENAI_API_KEY found.")
try:
openai_client = OpenAI(api_key=OPENAI_API_KEY)
# A lightweight way to test if the client is configured and key is somewhat valid:
# try:
# openai_client.models.list() # This makes a quick API call
# except Exception as test_e:
# raise Exception(f"OpenAI client initialized but test call failed: {test_e}") from test_e
OPENAI_DALLE_CONFIGURED = True
print("SUCCESS: image_services.py - OpenAI DALL-E client configured.")
except Exception as e:
OPENAI_DALLE_CONFIGURED = False
print(f"ERROR: image_services.py - Failed to configure OpenAI DALL-E client: {type(e).__name__} - {e}")
openai_client = None
else:
OPENAI_DALLE_CONFIGURED = False
print("WARNING: image_services.py - STORYVERSE_OPENAI_API_KEY not found or empty. DALL-E disabled.")
# Hugging Face Image Models (Fallback)
if HF_TOKEN and HF_TOKEN.strip():
print("INFO: image_services.py - STORYVERSE_HF_TOKEN found (for fallback image model).")
try:
hf_inference_image_client = InferenceClient(token=HF_TOKEN)
HF_IMAGE_API_CONFIGURED = True
print("SUCCESS: image_services.py - Hugging Face InferenceClient (for fallback images) ready.")
except Exception as e:
HF_IMAGE_API_CONFIGURED = False
print(f"ERROR: image_services.py - Failed to initialize HF InferenceClient for fallback images: {type(e).__name__} - {e}")
hf_inference_image_client = None
else:
HF_IMAGE_API_CONFIGURED = False
print("WARNING: image_services.py - STORYVERSE_HF_TOKEN not found or empty (for fallback image model).")
print(f"INFO: image_services.py - Image Service Init complete. DALL-E Ready: {OPENAI_DALLE_CONFIGURED}, HF Image (Fallback) Ready: {HF_IMAGE_API_CONFIGURED}")
def is_dalle_ready():
global OPENAI_DALLE_CONFIGURED
return OPENAI_DALLE_CONFIGURED
def is_hf_image_api_ready():
global HF_IMAGE_API_CONFIGURED
return HF_IMAGE_API_CONFIGURED
# --- OpenAI DALL-E ---
def generate_image_dalle(prompt: str,
model: str = "dall-e-3", # or "dall-e-2"
size: str = "1024x1024",
quality: str = "standard", # "standard" or "hd" for dall-e-3
n: int = 1,
response_format: str = "b64_json" # Get image data directly
) -> ImageGenResponse:
global openai_client # Use the initialized client
if not is_dalle_ready() or not openai_client:
return ImageGenResponse(error="OpenAI DALL-E API not configured.", success=False, provider="DALL-E", model_id_used=model)
print(f"DEBUG: image_services.py - Calling DALL-E ({model}) with prompt: {prompt[:70]}...")
try:
response = openai_client.images.generate(
model=model,
prompt=prompt,
size=size,
quality=quality,
n=n,
response_format=response_format
)
if response_format == "b64_json":
if not response.data or not response.data[0].b64_json:
return ImageGenResponse(error="No image data in DALL-E b64_json response.", success=False, provider="DALL-E", model_id_used=model, raw_response=response)
image_data = base64.b64decode(response.data[0].b64_json)
image = Image.open(BytesIO(image_data))
print(f"DEBUG: image_services.py - DALL-E image generated successfully ({model}).")
return ImageGenResponse(image=image, provider="DALL-E", model_id_used=model)
elif response_format == "url": # If you choose to get URL
if not response.data or not response.data[0].url:
return ImageGenResponse(error="No image URL in DALL-E response.", success=False, provider="DALL-E", model_id_used=model, raw_response=response)
image_url = response.data[0].url
print(f"DEBUG: image_services.py - DALL-E image URL received ({model}): {image_url}. Attempting download...")
img_content_response = requests.get(image_url, timeout=30)
img_content_response.raise_for_status()
image = Image.open(BytesIO(img_content_response.content))
print(f"DEBUG: image_services.py - DALL-E image downloaded successfully ({model}).")
return ImageGenResponse(image=image, image_url=image_url, provider="DALL-E", model_id_used=model)
else:
return ImageGenResponse(error=f"Unsupported DALL-E response_format: {response_format}", success=False, provider="DALL-E", model_id_used=model)
except Exception as e:
error_msg = f"DALL-E API Error ({model}): {type(e).__name__} - {str(e)}"
# Attempt to get more details from OpenAI error structure
if hasattr(e, 'response') and e.response is not None:
try:
err_data = e.response.json()
if 'error' in err_data and 'message' in err_data['error']:
error_msg += f" - OpenAI Message: {err_data['error']['message']}"
elif hasattr(e.response, 'text'):
error_msg += f" - API Response: {e.response.text[:200]}"
except: # Fallback if parsing response fails
if hasattr(e.response, 'text'): error_msg += f" - API Response: {e.response.text[:200]}"
elif hasattr(e, 'message'):
error_msg += f" - Detail: {e.message}"
print(f"ERROR: image_services.py - {error_msg}")
return ImageGenResponse(error=error_msg, success=False, provider="DALL-E", model_id_used=model, raw_response=e)
# --- Hugging Face Image Model (Fallback) ---
def generate_image_hf_model(prompt: str,
model_id: str = "stabilityai/stable-diffusion-xl-base-1.0", # Default HF model
negative_prompt: str = None,
height: int = 768,
width: int = 768,
num_inference_steps: int = 25,
guidance_scale: float = 7.0
) -> ImageGenResponse:
global hf_inference_image_client
if not is_hf_image_api_ready() or not hf_inference_image_client:
return ImageGenResponse(error="Hugging Face API (for images) not configured.", success=False, provider="HF Image API", model_id_used=model_id)
params = {
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale
}
params = {k: v for k, v in params.items() if v is not None}
print(f"DEBUG: image_services.py - Calling HF Image API ({model_id}) with prompt: {prompt[:70]}...")
try:
image_result: Image.Image = hf_inference_image_client.text_to_image(
prompt,
model=model_id,
**params
)
print(f"DEBUG: image_services.py - HF Image API ({model_id}) image generated successfully.")
return ImageGenResponse(image=image_result, provider="HF Image API", model_id_used=model_id)
except Exception as e:
error_msg = f"HF Image API Error ({model_id}): {type(e).__name__} - {str(e)}"
if "Rate limit reached" in str(e): error_msg += " You may have hit free tier limits for HF Inference API."
elif "Model is currently loading" in str(e) or "estimated_time" in str(e).lower(): error_msg += " The HF model may be loading, please try again in a moment."
elif "Authorization" in str(e) or "401" in str(e): error_msg += " Authentication issue with your STORYVERSE_HF_TOKEN."
elif "does not seem to support task text-to-image" in str(e): error_msg = f"Model {model_id} on HF may not support text-to-image or is misconfigured for Inference API."
print(f"ERROR: image_services.py - {error_msg}")
return ImageGenResponse(error=error_msg, success=False, provider="HF Image API", model_id_used=model_id, raw_response=e)
print("DEBUG: core.image_services (DALL-E Primary, HF Fallback for StoryVerseWeaver) - Module defined.")