Spaces:
Sleeping
Sleeping
Update core/evolution_engine.py
Browse files- core/evolution_engine.py +113 -44
core/evolution_engine.py
CHANGED
@@ -1,49 +1,118 @@
|
|
1 |
-
# algoforge_prime/core/
|
2 |
-
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
problem_description: str,
|
11 |
problem_type: str,
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
Attempts to evolve a solution based on its critique and score.
|
16 |
-
"""
|
17 |
-
system_p_evolve = get_system_prompt("evolution_general") # problem_type can be used for specialization
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
1 |
+
# algoforge_prime/core/evaluation_engine.py
|
2 |
+
import random
|
3 |
+
from .llm_clients import call_huggingface_api, call_gemini_api, LLMResponse
|
4 |
+
from ..prompts.system_prompts import get_system_prompt
|
5 |
+
from ..prompts.prompt_templates import format_critique_user_prompt
|
6 |
+
# Import our (simulated) safe executor
|
7 |
+
from .safe_executor import execute_python_code_with_tests, ExecutionResult # Assuming it's in the same 'core' package
|
8 |
+
|
9 |
+
class EvaluationResultOutput: # Renamed to avoid conflict with safe_executor.ExecutionResult
|
10 |
+
def __init__(self, combined_score=0, llm_critique_text="", execution_details: ExecutionResult = None, raw_llm_response=None):
|
11 |
+
self.combined_score = combined_score
|
12 |
+
self.llm_critique_text = llm_critique_text # LLM's qualitative assessment
|
13 |
+
self.execution_details = execution_details # Object from safe_executor
|
14 |
+
self.raw_llm_response = raw_llm_response
|
15 |
+
|
16 |
+
def get_display_critique(self):
|
17 |
+
full_critique = self.llm_critique_text if self.llm_critique_text else "LLM critique was not performed or failed."
|
18 |
+
if self.execution_details:
|
19 |
+
full_critique += f"\n\n**Automated Execution & Test Results (Simulated):**\n"
|
20 |
+
if self.execution_details.total_tests > 0:
|
21 |
+
full_critique += f" Tests Attempted: {self.execution_details.total_tests}\n"
|
22 |
+
full_critique += f" Tests Passed: {self.execution_details.passed_tests}\n"
|
23 |
+
if self.execution_details.error:
|
24 |
+
full_critique += f" Execution Error: {self.execution_details.error}\n"
|
25 |
+
elif self.execution_details.output:
|
26 |
+
full_critique += f" Execution Output (stdout):\n```\n{self.execution_details.output[:500]}\n```\n" # Limit output display
|
27 |
+
full_critique += f" Execution Time: {self.execution_details.execution_time:.4f}s\n"
|
28 |
+
return full_critique
|
29 |
+
|
30 |
+
|
31 |
+
def _parse_llm_score(llm_text_output: str) -> int:
|
32 |
+
# ... (keep your existing _parse_score_from_llm_text, renamed for clarity) ...
|
33 |
+
score = 0
|
34 |
+
if not llm_text_output or not isinstance(llm_text_output, str): return score
|
35 |
+
try:
|
36 |
+
import re
|
37 |
+
match = re.search(r"Score:\s*(\d+)(?:\s*/\s*10)?", llm_text_output, re.IGNORECASE)
|
38 |
+
if match:
|
39 |
+
parsed_score_val = int(match.group(1))
|
40 |
+
score = max(1, min(parsed_score_val, 10))
|
41 |
+
else: score = random.randint(3, 6) # Fallback if no score marker
|
42 |
+
except Exception: score = random.randint(3, 5) # Fallback on any parsing error
|
43 |
+
return score
|
44 |
+
|
45 |
+
|
46 |
+
def evaluate_solution_candidate(
|
47 |
+
solution_text: str,
|
48 |
problem_description: str,
|
49 |
problem_type: str,
|
50 |
+
user_provided_tests_code: str,
|
51 |
+
llm_client_config: dict
|
52 |
+
) -> EvaluationResultOutput:
|
|
|
|
|
|
|
53 |
|
54 |
+
llm_critique_text = "LLM critique generation failed or was skipped."
|
55 |
+
llm_score = 0
|
56 |
+
raw_llm_critique_resp = None
|
57 |
+
execution_result_obj = None # type: ExecutionResult
|
58 |
+
|
59 |
+
# 1. LLM-based Critique (only if solution_text is not an error itself)
|
60 |
+
if solution_text and not solution_text.startswith("ERROR"):
|
61 |
+
system_p_critique = get_system_prompt("critique_general")
|
62 |
+
user_p_critique = format_critique_user_prompt(problem_description, solution_text)
|
63 |
+
|
64 |
+
llm_response_obj = None
|
65 |
+
if llm_client_config["type"] == "hf":
|
66 |
+
llm_response_obj = call_huggingface_api(user_p_critique, llm_client_config["model_id"], llm_client_config["temp"], llm_client_config["max_tokens"], system_p_critique)
|
67 |
+
elif llm_client_config["type"] == "google_gemini":
|
68 |
+
llm_response_obj = call_gemini_api(user_p_critique, llm_client_config["model_id"], llm_client_config["temp"], llm_client_config["max_tokens"], system_p_critique)
|
69 |
+
|
70 |
+
if llm_response_obj:
|
71 |
+
raw_llm_critique_resp = llm_response_obj.raw_response
|
72 |
+
if llm_response_obj.success:
|
73 |
+
llm_critique_text = llm_response_obj.text
|
74 |
+
llm_score = _parse_llm_score(llm_critique_text)
|
75 |
+
else:
|
76 |
+
llm_critique_text = f"Error during LLM critique (Model: {llm_response_obj.model_id_used}): {llm_response_obj.error}"
|
77 |
+
llm_score = 0 # Penalize
|
78 |
+
elif solution_text and solution_text.startswith("ERROR"):
|
79 |
+
llm_critique_text = f"Solution was an error from Genesis: {solution_text}"
|
80 |
+
llm_score = 0
|
81 |
+
|
82 |
+
|
83 |
+
# 2. Code Execution (if Python problem, code exists, and tests are provided)
|
84 |
+
if "python" in problem_type.lower() and solution_text and not solution_text.startswith("ERROR") and user_provided_tests_code.strip():
|
85 |
+
print(f"INFO: evaluation_engine.py - Preparing to execute Python code candidate against user tests.")
|
86 |
+
# Use the (simulated) safe executor
|
87 |
+
execution_result_obj = execute_python_code_with_tests(
|
88 |
+
solution_text, user_provided_tests_code, timeout_seconds=10 # Example timeout
|
89 |
)
|
90 |
+
print(f"INFO: evaluation_engine.py - Execution result: {execution_result_obj}")
|
91 |
+
elif "python" in problem_type.lower() and not user_provided_tests_code.strip():
|
92 |
+
execution_result_obj = ExecutionResult(success=True, output="No user tests provided to run against the Python code.", total_tests=0)
|
93 |
+
|
94 |
+
|
95 |
+
# 3. Combine Scores into a Final Score (More sophisticated heuristic)
|
96 |
+
combined_score = llm_score
|
97 |
+
if execution_result_obj and execution_result_obj.total_tests > 0:
|
98 |
+
if not execution_result_obj.success or execution_result_obj.error: # Major execution failure
|
99 |
+
combined_score = max(1, llm_score - 5) # Penalize heavily
|
100 |
+
else:
|
101 |
+
pass_ratio = execution_result_obj.passed_tests / execution_result_obj.total_tests
|
102 |
+
if pass_ratio == 1.0: # All tests passed
|
103 |
+
combined_score = min(10, llm_score + 2) # Significant bonus
|
104 |
+
elif pass_ratio >= 0.75: # Most tests passed
|
105 |
+
combined_score = min(10, llm_score + 1) # Small bonus
|
106 |
+
elif pass_ratio < 0.25: # Very few tests passed
|
107 |
+
combined_score = max(1, llm_score - 4)
|
108 |
+
else: # Some tests passed
|
109 |
+
combined_score = int(llm_score * (0.5 + 0.5 * pass_ratio)) # Weighted average
|
110 |
+
|
111 |
+
combined_score = max(1, min(10, combined_score)) # Clamp 1-10
|
112 |
|
113 |
+
return EvaluationResultOutput(
|
114 |
+
combined_score=combined_score,
|
115 |
+
llm_critique_text=llm_critique_text,
|
116 |
+
execution_details=execution_result_obj,
|
117 |
+
raw_llm_response=raw_llm_critique_resp
|
118 |
+
)
|