Spaces:
Sleeping
Sleeping
Update core/llm_clients.py
Browse files- core/llm_clients.py +137 -0
core/llm_clients.py
CHANGED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# algoforge_prime/core/llm_clients.py
|
2 |
+
import os
|
3 |
+
import google.generativeai as genai
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
|
6 |
+
# --- Configuration ---
|
7 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
8 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
+
|
10 |
+
GEMINI_API_CONFIGURED = False
|
11 |
+
HF_API_CONFIGURED = False
|
12 |
+
|
13 |
+
hf_inference_client = None
|
14 |
+
google_gemini_models = {} # To store initialized Gemini model instances
|
15 |
+
|
16 |
+
# --- Initialization ---
|
17 |
+
def initialize_clients():
|
18 |
+
global GEMINI_API_CONFIGURED, HF_API_CONFIGURED, hf_inference_client, google_gemini_models
|
19 |
+
|
20 |
+
# Google Gemini
|
21 |
+
if GOOGLE_API_KEY:
|
22 |
+
try:
|
23 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
24 |
+
GEMINI_API_CONFIGURED = True
|
25 |
+
print("INFO: llm_clients.py - Google Gemini API configured.")
|
26 |
+
except Exception as e:
|
27 |
+
print(f"ERROR: llm_clients.py - Failed to configure Google Gemini API: {e}")
|
28 |
+
else:
|
29 |
+
print("WARNING: llm_clients.py - GOOGLE_API_KEY not found.")
|
30 |
+
|
31 |
+
# Hugging Face
|
32 |
+
if HF_TOKEN:
|
33 |
+
try:
|
34 |
+
hf_inference_client = InferenceClient(token=HF_TOKEN)
|
35 |
+
HF_API_CONFIGURED = True
|
36 |
+
print("INFO: llm_clients.py - Hugging Face InferenceClient initialized.")
|
37 |
+
except Exception as e:
|
38 |
+
print(f"ERROR: llm_clients.py - Failed to initialize Hugging Face InferenceClient: {e}")
|
39 |
+
else:
|
40 |
+
print("WARNING: llm_clients.py - HF_TOKEN not found.")
|
41 |
+
|
42 |
+
# Call initialize_clients when the module is imported for the first time.
|
43 |
+
# However, for Gradio apps that might reload, it's often better to call this explicitly from app.py's main scope.
|
44 |
+
# For now, let's assume it's called once. If you see issues, move the call.
|
45 |
+
# initialize_clients() # Or call this from app.py
|
46 |
+
|
47 |
+
def get_gemini_model_instance(model_id, system_instruction=None):
|
48 |
+
"""Gets or creates a Gemini model instance."""
|
49 |
+
if not GEMINI_API_CONFIGURED:
|
50 |
+
raise ConnectionError("Google Gemini API not configured.")
|
51 |
+
|
52 |
+
instance_key = model_id + ("_sys" if system_instruction else "") # Simple keying
|
53 |
+
if instance_key not in google_gemini_models:
|
54 |
+
try:
|
55 |
+
google_gemini_models[instance_key] = genai.GenerativeModel(
|
56 |
+
model_name=model_id,
|
57 |
+
system_instruction=system_instruction
|
58 |
+
)
|
59 |
+
print(f"INFO: Initialized Gemini Model Instance: {instance_key}")
|
60 |
+
except Exception as e:
|
61 |
+
print(f"ERROR: Failed to initialize Gemini model {model_id}: {e}")
|
62 |
+
raise # Re-raise the exception to be caught by the caller
|
63 |
+
return google_gemini_models[instance_key]
|
64 |
+
|
65 |
+
|
66 |
+
class LLMResponse:
|
67 |
+
def __init__(self, text=None, error=None, success=True, raw_response=None):
|
68 |
+
self.text = text
|
69 |
+
self.error = error
|
70 |
+
self.success = success
|
71 |
+
self.raw_response = raw_response # Store original API response if needed
|
72 |
+
|
73 |
+
def __str__(self):
|
74 |
+
if self.success:
|
75 |
+
return self.text if self.text is not None else ""
|
76 |
+
return f"ERROR: {self.error}"
|
77 |
+
|
78 |
+
|
79 |
+
def call_huggingface_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt_text=None):
|
80 |
+
if not HF_API_CONFIGURED or not hf_inference_client:
|
81 |
+
return LLMResponse(error="Hugging Face API not configured.", success=False)
|
82 |
+
|
83 |
+
full_prompt = prompt_text
|
84 |
+
if system_prompt_text: # Simple prepend, specific formatting depends on model
|
85 |
+
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt_text}\n<</SYS>>\n\n{prompt_text} [/INST]" # Llama-style
|
86 |
+
|
87 |
+
try:
|
88 |
+
use_sample = temperature > 0.0
|
89 |
+
raw_response = hf_inference_client.text_generation(
|
90 |
+
full_prompt, model=model_id, max_new_tokens=max_new_tokens,
|
91 |
+
temperature=temperature if use_sample else None,
|
92 |
+
do_sample=use_sample, stream=False
|
93 |
+
)
|
94 |
+
return LLMResponse(text=raw_response, raw_response=raw_response)
|
95 |
+
except Exception as e:
|
96 |
+
error_msg = f"HF API Error ({model_id}): {type(e).__name__} - {e}"
|
97 |
+
print(f"ERROR: llm_clients.py - {error_msg}")
|
98 |
+
return LLMResponse(error=error_msg, success=False, raw_response=e)
|
99 |
+
|
100 |
+
def call_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=400, system_prompt_text=None):
|
101 |
+
if not GEMINI_API_CONFIGURED:
|
102 |
+
return LLMResponse(error="Google Gemini API not configured.", success=False)
|
103 |
+
|
104 |
+
try:
|
105 |
+
model_instance = get_gemini_model_instance(model_id, system_instruction=system_prompt_text)
|
106 |
+
|
107 |
+
generation_config = genai.types.GenerationConfig(
|
108 |
+
temperature=temperature,
|
109 |
+
max_output_tokens=max_new_tokens
|
110 |
+
)
|
111 |
+
raw_response = model_instance.generate_content(
|
112 |
+
prompt_text, # User prompt
|
113 |
+
generation_config=generation_config,
|
114 |
+
stream=False
|
115 |
+
)
|
116 |
+
|
117 |
+
if raw_response.prompt_feedback and raw_response.prompt_feedback.block_reason:
|
118 |
+
reason = raw_response.prompt_feedback.block_reason_message or raw_response.prompt_feedback.block_reason
|
119 |
+
error_msg = f"Gemini API: Prompt blocked due to safety. Reason: {reason}"
|
120 |
+
print(f"WARNING: llm_clients.py - {error_msg}")
|
121 |
+
return LLMResponse(error=error_msg, success=False, raw_response=raw_response)
|
122 |
+
|
123 |
+
if not raw_response.candidates or not raw_response.candidates[0].content.parts:
|
124 |
+
finish_reason = raw_response.candidates[0].finish_reason if raw_response.candidates else "Unknown"
|
125 |
+
if str(finish_reason).upper() == "SAFETY":
|
126 |
+
error_msg = f"Gemini API: Response generation stopped by safety filters. Finish Reason: {finish_reason}"
|
127 |
+
else:
|
128 |
+
error_msg = f"Gemini API: Empty response or no content. Finish Reason: {finish_reason}"
|
129 |
+
print(f"WARNING: llm_clients.py - {error_msg}")
|
130 |
+
return LLMResponse(error=error_msg, success=False, raw_response=raw_response)
|
131 |
+
|
132 |
+
return LLMResponse(text=raw_response.candidates[0].content.parts[0].text, raw_response=raw_response)
|
133 |
+
|
134 |
+
except Exception as e:
|
135 |
+
error_msg = f"Gemini API Error ({model_id}): {type(e).__name__} - {e}"
|
136 |
+
print(f"ERROR: llm_clients.py - {error_msg}")
|
137 |
+
return LLMResponse(error=error_msg, success=False, raw_response=e)
|