Spaces:
Sleeping
Sleeping
Update core/evaluation_engine.py
Browse files- core/evaluation_engine.py +188 -0
core/evaluation_engine.py
CHANGED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# algoforge_prime/core/evaluation_engine.py
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
import traceback
|
5 |
+
# IMPORTANT: The following import is for a HYPOTHETICAL safe executor.
|
6 |
+
# You would need to implement or find a robust sandboxing solution.
|
7 |
+
# from .restricted_env_executor import execute_python_code_safely # Example
|
8 |
+
|
9 |
+
from .llm_clients import call_huggingface_api, call_gemini_api, LLMResponse
|
10 |
+
from ..prompts.system_prompts import get_system_prompt
|
11 |
+
from ..prompts.prompt_templates import format_critique_user_prompt
|
12 |
+
|
13 |
+
class EvaluationResult:
|
14 |
+
def __init__(self, score=0, critique_text="", passed_tests=0, total_tests=0, execution_summary=None, raw_llm_critique_response=None):
|
15 |
+
self.score = score # Final combined score
|
16 |
+
self.critique_text = critique_text # LLM based critique + execution summary
|
17 |
+
self.passed_tests = passed_tests
|
18 |
+
self.total_tests = total_tests
|
19 |
+
self.execution_summary = execution_summary # Error or success message from code execution
|
20 |
+
self.raw_llm_critique_response = raw_llm_critique_response
|
21 |
+
|
22 |
+
def __str__(self): # For simple string representation if needed
|
23 |
+
return f"Score: {self.score}/10. Tests: {self.passed_tests}/{self.total_tests}. Summary: {self.execution_summary}. Critique: {self.critique_text[:100]}..."
|
24 |
+
|
25 |
+
def _parse_score_from_llm_text(llm_text_output: str) -> int:
|
26 |
+
"""Helper to parse 'Score: X/10' from LLM's textual output."""
|
27 |
+
score = 0 # Default if not found or unparsable
|
28 |
+
if not llm_text_output or not isinstance(llm_text_output, str):
|
29 |
+
return score
|
30 |
+
|
31 |
+
try:
|
32 |
+
# Look for "Score: X/10" or "Score: X"
|
33 |
+
# More robust parsing might be needed depending on LLM variability
|
34 |
+
import re
|
35 |
+
match = re.search(r"Score:\s*(\d+)(?:\s*/\s*10)?", llm_text_output, re.IGNORECASE)
|
36 |
+
if match:
|
37 |
+
parsed_score_val = int(match.group(1))
|
38 |
+
score = max(1, min(parsed_score_val, 10)) # Clamp score to 1-10
|
39 |
+
else: # Fallback if specific format not found
|
40 |
+
print(f"INFO: evaluation_engine.py - 'Score: X/10' marker not found in LLM output. Assigning fallback score. Output: {llm_text_output[:100]}...")
|
41 |
+
score = random.randint(3, 6) # Assign a mediocre random score
|
42 |
+
except Exception as e:
|
43 |
+
print(f"WARNING: evaluation_engine.py - Error parsing score from LLM output '{llm_text_output[:100]}...': {e}")
|
44 |
+
score = random.randint(3, 5) # Fallback on parsing error
|
45 |
+
return score
|
46 |
+
|
47 |
+
def _placeholder_safe_python_execution(code_string: str, user_tests_string: str) -> tuple[int, int, str]:
|
48 |
+
"""
|
49 |
+
PLACEHOLDER for safe Python code execution.
|
50 |
+
**WARNING: THIS IS NOT SAFE FOR PRODUCTION. IT ONLY SIMULATES.**
|
51 |
+
Replace with a robust sandboxing mechanism (Docker, nsjail, WASM, etc.).
|
52 |
+
"""
|
53 |
+
print(f"DEV_INFO: evaluation_engine.py - Entering PLACEHOLDER for code execution.")
|
54 |
+
print(f" Code (first 100 chars): {code_string[:100]}...")
|
55 |
+
print(f" Tests (first 100 chars): {user_tests_string[:100]}...")
|
56 |
+
|
57 |
+
if not user_tests_string.strip() or not code_string.strip():
|
58 |
+
return 0, 0, "SIMULATED: No tests provided or no code to test."
|
59 |
+
|
60 |
+
# Naive parsing of assert statements
|
61 |
+
test_lines = [line.strip() for line in user_tests_string.splitlines() if line.strip().startswith("assert")]
|
62 |
+
total_tests_found = len(test_lines)
|
63 |
+
|
64 |
+
if total_tests_found == 0:
|
65 |
+
return 0, 0, "SIMULATED: No 'assert' statements found in user tests."
|
66 |
+
|
67 |
+
# Extremely simplistic simulation logic (NOT REAL EXECUTION)
|
68 |
+
passed_count = 0
|
69 |
+
execution_log = ["SIMULATED EXECUTION LOG:"]
|
70 |
+
try:
|
71 |
+
# This is where real sandboxed execution would happen.
|
72 |
+
# We'll simulate based on keywords for demonstration.
|
73 |
+
if "syntax error" in code_string.lower() or "indentationerror" in code_string.lower():
|
74 |
+
execution_log.append(" - Simulated: Potential syntax error in generated code.")
|
75 |
+
# passed_count remains 0
|
76 |
+
elif "runtime error" in code_string.lower() or "exception" in code_string.lower():
|
77 |
+
execution_log.append(" - Simulated: Code might raise a runtime error.")
|
78 |
+
passed_count = random.randint(0, total_tests_found // 3) # Few pass
|
79 |
+
elif "return" not in code_string and any("==" in t for t in test_lines): # If expecting a return value
|
80 |
+
execution_log.append(" - Simulated: Code might be missing a crucial 'return' statement.")
|
81 |
+
passed_count = random.randint(0, total_tests_found // 2)
|
82 |
+
else: # Simulate some passing, some failing
|
83 |
+
passed_count = random.randint(total_tests_found // 2, total_tests_found)
|
84 |
+
execution_log.append(f" - Simulated: {passed_count} of {total_tests_found} tests likely passed.")
|
85 |
+
|
86 |
+
if passed_count < total_tests_found:
|
87 |
+
execution_log.append(f" - Simulated: {total_tests_found - passed_count} test(s) likely failed.")
|
88 |
+
|
89 |
+
summary = f"Simulated: {passed_count}/{total_tests_found} tests passed."
|
90 |
+
if passed_count < total_tests_found : summary += " Some tests likely failed."
|
91 |
+
|
92 |
+
except Exception as e_sim: # Error in our simulation logic
|
93 |
+
summary = f"Error during test SIMULATION logic: {str(e_sim)}"
|
94 |
+
passed_count = 0
|
95 |
+
execution_log.append(f" - ERROR in simulation: {e_sim}")
|
96 |
+
|
97 |
+
print(f"DEV_INFO: evaluation_engine.py - Placeholder execution result: {summary}")
|
98 |
+
return passed_count, total_tests_found, "\n".join(execution_log)
|
99 |
+
|
100 |
+
|
101 |
+
def evaluate_solution_candidate(
|
102 |
+
solution_text: str,
|
103 |
+
problem_description: str,
|
104 |
+
problem_type: str,
|
105 |
+
user_provided_tests: str, # String of Python assert statements
|
106 |
+
llm_client_config: dict # {"type": ..., "model_id": ..., "temp": ..., "max_tokens": ...}
|
107 |
+
) -> EvaluationResult:
|
108 |
+
"""
|
109 |
+
Evaluates a single solution candidate.
|
110 |
+
"""
|
111 |
+
llm_critique_output_text = "LLM critique could not be performed due to an earlier error or API issue."
|
112 |
+
llm_based_score = 0
|
113 |
+
raw_llm_critique_resp = None
|
114 |
+
|
115 |
+
# 1. LLM-based Critique (if solution_text is not an error message itself)
|
116 |
+
if solution_text and not solution_text.startswith("ERROR"):
|
117 |
+
system_p_critique = get_system_prompt("critique_general") # problem_type can be used here too
|
118 |
+
user_p_critique = format_critique_user_prompt(problem_description, solution_text)
|
119 |
+
|
120 |
+
llm_response_obj = None # type: LLMResponse
|
121 |
+
if llm_client_config["type"] == "hf":
|
122 |
+
llm_response_obj = call_huggingface_api(
|
123 |
+
user_p_critique, llm_client_config["model_id"],
|
124 |
+
temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"],
|
125 |
+
system_prompt_text=system_p_critique
|
126 |
+
)
|
127 |
+
elif llm_client_config["type"] == "google_gemini":
|
128 |
+
llm_response_obj = call_gemini_api(
|
129 |
+
user_p_critique, llm_client_config["model_id"],
|
130 |
+
temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"],
|
131 |
+
system_prompt_text=system_p_critique
|
132 |
+
)
|
133 |
+
|
134 |
+
if llm_response_obj:
|
135 |
+
raw_llm_critique_resp = llm_response_obj.raw_response
|
136 |
+
if llm_response_obj.success:
|
137 |
+
llm_critique_output_text = llm_response_obj.text
|
138 |
+
llm_based_score = _parse_score_from_llm_text(llm_critique_output_text)
|
139 |
+
else:
|
140 |
+
llm_critique_output_text = f"Error during LLM critique (Model: {llm_response_obj.model_id_used}): {llm_response_obj.error}"
|
141 |
+
llm_based_score = 0 # Penalize for critique failure
|
142 |
+
elif solution_text and solution_text.startswith("ERROR"):
|
143 |
+
llm_critique_output_text = f"Solution was an error from Genesis: {solution_text}"
|
144 |
+
llm_based_score = 0
|
145 |
+
|
146 |
+
|
147 |
+
# 2. (Simulated) Code Execution if applicable
|
148 |
+
passed_tests_count = 0
|
149 |
+
total_tests_count = 0
|
150 |
+
exec_summary_msg = "Automated tests not applicable or not run for this problem type/solution."
|
151 |
+
|
152 |
+
# Only run tests if it's a Python problem, tests are provided, and solution isn't an error
|
153 |
+
if "python" in problem_type.lower() and user_provided_tests.strip() and solution_text and not solution_text.startswith("ERROR"):
|
154 |
+
# **IMPORTANT**: Replace with a REAL sandboxed executor for safety.
|
155 |
+
passed_tests_count, total_tests_count, exec_summary_msg = _placeholder_safe_python_execution(
|
156 |
+
solution_text, user_provided_tests
|
157 |
+
)
|
158 |
+
elif "python" in problem_type.lower() and not user_provided_tests.strip():
|
159 |
+
exec_summary_msg = "No user tests provided for this Python problem."
|
160 |
+
|
161 |
+
|
162 |
+
# 3. Combine Scores into a Final Score (Example Heuristic)
|
163 |
+
final_score_calculated = llm_based_score
|
164 |
+
if total_tests_count > 0: # If tests were run
|
165 |
+
test_pass_ratio = passed_tests_count / total_tests_count
|
166 |
+
if test_pass_ratio < 0.5 : # Penalize heavily if less than half tests pass
|
167 |
+
final_score_calculated = max(1, int(llm_based_score * 0.5) - 1)
|
168 |
+
elif test_pass_ratio == 1.0 and passed_tests_count > 0: # All tests passed
|
169 |
+
final_score_calculated = min(10, llm_based_score + 1 if llm_based_score < 10 else 10) # Small bonus
|
170 |
+
else: # Some tests passed or ratio between 0.5 and 1.0
|
171 |
+
final_score_calculated = int(llm_based_score * (0.6 + 0.4 * test_pass_ratio))
|
172 |
+
final_score_calculated = max(1, min(10, final_score_calculated)) # Ensure score is 1-10
|
173 |
+
|
174 |
+
# Construct comprehensive critique text for display
|
175 |
+
comprehensive_critique = f"{llm_critique_output_text}"
|
176 |
+
if total_tests_count > 0 or ("python" in problem_type.lower() and user_provided_tests.strip()): # Add test summary if applicable
|
177 |
+
comprehensive_critique += f"\n\n**Automated Test Summary (Simulated):**\n{exec_summary_msg}\n"
|
178 |
+
comprehensive_critique += f"Passed: {passed_tests_count}/{total_tests_count}"
|
179 |
+
|
180 |
+
|
181 |
+
return EvaluationResult(
|
182 |
+
score=final_score_calculated,
|
183 |
+
critique_text=comprehensive_critique,
|
184 |
+
passed_tests=passed_tests_count,
|
185 |
+
total_tests=total_tests_count,
|
186 |
+
execution_summary=exec_summary_msg,
|
187 |
+
raw_llm_critique_response=raw_llm_critique_resp
|
188 |
+
)
|