mgbam commited on
Commit
7dbc041
·
verified ·
1 Parent(s): 907474a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +337 -200
app.py CHANGED
@@ -1,61 +1,156 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
  import os
4
- import random # For a bit of mock variety if needed
5
 
6
  # --- ALGOFORGE PRIME™ CONFIGURATION & SECRETS ---
7
- # THE SACRED HF_TOKEN - ENSURE THIS IS IN YOUR SPACE SECRETS
8
- HF_TOKEN = os.getenv("HF_TOKEN")
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  if not HF_TOKEN:
11
- print("WARNING: HF_TOKEN not found. LLM calls will fail. Please add HF_TOKEN to your Space Secrets!")
12
- # You might want to raise an error or display a persistent warning in the UI
13
-
14
- # Initialize the Inference Client - The Conduit to a Universe of Models!
15
- client = InferenceClient(token=HF_TOKEN)
16
-
17
- # Curated List of Models for Different Tasks (User Selectable!)
18
- # You can expand this list. Ensure they are text-generation or instruct models.
19
- AVAILABLE_MODELS = {
20
- "General & Logic (Balanced)": "mistralai/Mistral-7B-Instruct-v0.2",
21
- "Code Generation (Strong)": "codellama/CodeLlama-34b-Instruct-hf", # Might be slow, consider smaller CodeLlama
22
- "Creative & Versatile (Fast)": "google/gemma-7b-it",
23
- "Compact & Quick (Good for CPU tests)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
24
- }
25
- DEFAULT_MODEL = "mistralai/Mistral-7B-Instruct-v0.2"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  # --- CORE AI ENGINEERING: LLM INTERACTION FUNCTIONS ---
28
 
29
- def call_llm_via_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt=None):
30
- """
31
- Centralized function to call the Hugging Face Inference API.
32
- As an SRE, I like centralized, observable points of failure/success!
33
- """
34
- if not HF_TOKEN:
35
- return "ERROR: HF_TOKEN is not configured. Cannot contact the LLM Oracle."
36
 
37
- full_prompt = prompt_text
38
- if system_prompt: # Some models use system prompts differently, this is a basic way
39
  full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt_text} [/INST]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
 
 
 
41
 
42
  try:
43
- response_stream = client.text_generation(
44
- full_prompt,
45
- model=model_id,
46
- max_new_tokens=max_new_tokens,
47
- temperature=temperature if temperature > 0 else None, # API expects None for temp 0
48
- stream=False # Keep it simple for this demo; stream=True for real-time
 
49
  )
50
- # The response structure might vary slightly based on the model/client version.
51
- # Typically, it's just the generated string.
52
- # If it returns a dict: response_stream.get("generated_text", response_stream)
53
- return response_stream
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  except Exception as e:
55
- print(f"LLM API Call Error ({model_id}): {e}")
56
- return f"LLM API Error: Could not connect or process request with {model_id}. Details: {str(e)}"
 
 
 
 
 
 
 
57
 
58
  # --- ALGOFORGE PRIME™ - THE GRAND ORCHESTRATOR ---
 
 
 
59
 
60
  def run_algoforge_simulation(
61
  problem_type, problem_description, initial_hints,
@@ -65,213 +160,255 @@ def run_algoforge_simulation(
65
  evolve_temp, evolve_max_tokens
66
  ):
67
  if not problem_description:
68
- return "ERROR: Problem Description is the lifeblood of innovation! Please provide it.", "", "", "", ""
69
 
70
- if not HF_TOKEN:
71
- # This message will appear in the output fields if the token is missing
72
- no_token_msg = "CRITICAL ERROR: HF_TOKEN is missing. AlgoForge Prime™ cannot access its cognitive core. Please configure HF_TOKEN in Space Secrets."
73
- return no_token_msg, no_token_msg, no_token_msg, no_token_msg
74
-
75
- model_id = AVAILABLE_MODELS.get(selected_model_key, DEFAULT_MODEL)
76
- log_entries = [f"**AlgoForge Prime™ Initializing...**\nSelected Model Core: {model_id} ({selected_model_key})\nProblem Type: {problem_type}"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- # --- STAGE 1: GENESIS ENGINE - MULTIVERSE SOLUTION GENERATION ---
79
  log_entries.append("\n**Stage 1: Genesis Engine - Generating Initial Solution Candidates...**")
80
  generated_solutions_raw = []
81
- system_prompt_generate = f"You are an expert {problem_type.lower().replace(' ', '_')} algorithm designer. Your goal is to brainstorm multiple diverse solutions."
82
  for i in range(num_initial_solutions):
83
- prompt_generate = (
84
  f"Problem Description: \"{problem_description}\"\n"
85
  f"Consider these initial thoughts/constraints: \"{initial_hints if initial_hints else 'None'}\"\n"
86
  f"Please provide one distinct and complete solution/algorithm for this problem. "
87
  f"This is solution attempt #{i+1} of {num_initial_solutions}. Try a different approach if possible."
88
  )
89
- log_entries.append(f" Sending to Genesis Engine (Attempt {i+1}):\n Model: {model_id}\n Prompt (snippet): {prompt_generate[:150]}...")
90
- solution_text = call_llm_via_api(prompt_generate, model_id, gen_temp, gen_max_tokens, system_prompt_generate)
91
  generated_solutions_raw.append(solution_text)
92
- log_entries.append(f" Genesis Engine Response (Attempt {i+1} - Snippet): {solution_text[:150]}...")
93
 
94
- if not any(sol and not sol.startswith("LLM API Error") and not sol.startswith("ERROR:") for sol in generated_solutions_raw):
95
- log_entries.append(" Genesis Engine failed to produce viable candidates.")
96
- return "No valid solutions generated by the Genesis Engine.", "", "", "\n".join(log_entries)
 
 
 
97
 
98
- # --- STAGE 2: CRITIQUE CRUCIBLE - RUTHLESS EVALUATION ---
99
  log_entries.append("\n**Stage 2: Critique Crucible - Evaluating Candidates...**")
100
  evaluated_solutions_display = []
101
  evaluated_sols_data = []
102
- system_prompt_evaluate = "You are a highly critical and insightful AI algorithm evaluator. Your task is to assess a given solution based on clarity, potential correctness, and perceived efficiency. Provide a concise critique and a numerical score from 1 (poor) to 10 (excellent)."
 
 
 
 
 
103
 
104
- for i, sol_text in enumerate(generated_solutions_raw):
105
- if sol_text.startswith("LLM API Error") or sol_text.startswith("ERROR:"):
106
- critique = f"Solution {i+1} could not be generated due to an API error."
107
  score = 0
108
  else:
109
- prompt_evaluate = (
110
- f"Problem Reference: \"{problem_description[:200]}...\"\n"
111
- f"Evaluate the following proposed solution:\n```\n{sol_text}\n```\n"
112
- f"Provide your critique and a score (e.g., 'Critique: This is okay. Score: 7/10')."
113
  )
114
- log_entries.append(f" Sending to Critique Crucible (Solution {i+1}):\n Model: {model_id}\n Prompt (snippet): {prompt_evaluate[:150]}...")
115
- evaluation_text = call_llm_via_api(prompt_evaluate, model_id, eval_temp, eval_max_tokens, system_prompt_evaluate)
116
- log_entries.append(f" Critique Crucible Response (Solution {i+1} - Snippet): {evaluation_text[:150]}...")
117
 
118
- # Attempt to parse score (this is a simple parser, can be improved)
119
- parsed_score = 0
120
- try:
121
- # Look for "Score: X/10" or "Score: X"
122
- score_match = [s for s in evaluation_text.split() if s.endswith("/10")]
123
- if score_match:
124
- parsed_score = int(score_match[0].split('/')[0].split(':')[-1].strip())
125
- else: # Try just a number if X/10 not found
126
- nums = [int(s) for s in evaluation_text.replace(":"," ").split() if s.isdigit()]
127
- if nums: parsed_score = max(min(nums[-1],10),0) # Take last number, cap at 10
128
- except ValueError:
129
- parsed_score = random.randint(3,7) # Fallback if parsing fails
130
-
131
- critique = evaluation_text
132
- score = parsed_score
133
-
134
- evaluated_solutions_display.append(f"**Candidate {i+1}:**\n```text\n{sol_text}\n```\n**Crucible Verdict (Score: {score}/10):**\n{critique}\n---")
135
- evaluated_sols_data.append({"id": i+1, "solution": sol_text, "score": score, "critique": critique})
136
-
137
- if not evaluated_sols_data:
138
- log_entries.append(" Critique Crucible yielded no evaluations.")
139
- return "\n\n".join(evaluated_solutions_display) if evaluated_solutions_display else "Generation OK, but evaluation failed.", "", "", "\n".join(log_entries)
140
-
141
- # --- STAGE 3: SELECTION & ASCENSION PREP ---
 
 
 
 
 
 
 
142
  evaluated_sols_data.sort(key=lambda x: x["score"], reverse=True)
143
  best_initial_solution_data = evaluated_sols_data[0]
144
  log_entries.append(f"\n**Stage 3: Champion Selected - Candidate {best_initial_solution_data['id']} (Score: {best_initial_solution_data['score']}) chosen for evolution.**")
 
 
 
145
 
146
- # --- STAGE 4: EVOLUTIONARY FORGE - PURSUIT OF PERFECTION ---
147
  log_entries.append("\n**Stage 4: Evolutionary Forge - Refining the Champion...**")
148
- system_prompt_evolve = f"You are an elite AI algorithm optimizer. Your task is to take a good solution and make it significantly better, focusing on {problem_type.lower()} best practices, efficiency, or clarity."
149
- prompt_evolve = (
150
- f"Original Problem: \"{problem_description}\"\n"
151
- f"The current leading solution (Score: {best_initial_solution_data['score']}/10) is:\n```\n{best_initial_solution_data['solution']}\n```\n"
152
- f"Original Critique: \"{best_initial_solution_data['critique']}\"\n"
153
- f"Your mission: Evolve this solution. Make it demonstrably superior. Explain the key improvements you've made."
154
  )
155
- log_entries.append(f" Sending to Evolutionary Forge:\n Model: {model_id}\n Prompt (snippet): {prompt_evolve[:150]}...")
156
- evolved_solution_text = call_llm_via_api(prompt_evolve, model_id, evolve_temp, evolve_max_tokens, system_prompt_evolve)
157
- log_entries.append(f" Evolutionary Forge Response (Snippet): {evolved_solution_text[:150]}...")
 
 
 
 
158
 
159
- # --- FINAL OUTPUT ASSEMBLY ---
160
  initial_solutions_output_md = "\n\n".join(evaluated_solutions_display)
161
  best_solution_output_md = (
162
  f"**Champion Candidate {best_initial_solution_data['id']} (Original Score: {best_initial_solution_data['score']}/10):**\n"
163
  f"```text\n{best_initial_solution_data['solution']}\n```\n"
164
  f"**Original Crucible Verdict:**\n{best_initial_solution_data['critique']}"
165
  )
166
- evolved_solution_output_md = f"**✨ AlgoForge Prime™ Evolved Artifact ✨:**\n```text\n{evolved_solution_text}\n```"
167
 
168
  log_entries.append("\n**AlgoForge Prime™ Cycle Complete.**")
169
  final_log_output = "\n".join(log_entries)
170
 
171
  return initial_solutions_output_md, best_solution_output_md, evolved_solution_output_md, final_log_output
172
 
173
- # --- GRADIO UI: THE COMMAND DECK OF ALGOFORGE PRIME™ ---
174
  intro_markdown = """
175
- # ✨ AlgoForge Prime™ ✨: Conceptual Algorithmic Evolution
176
- Welcome, Architect of the Future! I am your humble servant, an AI-driven system inspired by the groundbreaking work of pioneers like Google DeepMind's AlphaEvolve.
177
- My purpose? To demonstrate a *simplified, conceptual* workflow for AI-assisted algorithm discovery and refinement.
178
- **This is NOT AlphaEvolve.** This is a creative exploration using powerful Hugging Face LLMs via your `HF_TOKEN`.
179
-
180
- **The Process, Distilled:**
181
- 1. **Genesis Engine:** We command an LLM to generate multiple diverse solutions to your problem.
182
- 2. **Critique Crucible:** Another (or the same) LLM instance evaluates these candidates, scoring them.
183
- 3. **Evolutionary Forge:** The highest-scoring candidate is fed back to an LLM with the directive: *IMPROVE IT!*
184
-
185
- **Your `HF_TOKEN` must be set in this Space's Secrets for AlgoForge Prime™ to function!**
186
  """
187
 
188
- with gr.Blocks(theme=gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue"), title="AlgoForge Prime™") as demo:
189
- gr.Markdown(intro_markdown)
 
 
 
 
 
 
 
 
 
 
 
190
 
191
- if not HF_TOKEN:
192
- gr.Markdown("<h2 style='color:red;'>⚠️ CRITICAL: `HF_TOKEN` is NOT detected in Space Secrets. AlgoForge Prime™ is non-operational. Please add your token.</h2>")
193
-
194
- with gr.Row():
195
- with gr.Column(scale=1):
196
- gr.Markdown("## 💡 1. Define the Challenge")
197
- problem_type_dd = gr.Dropdown(
198
- ["Python Algorithm", "Data Structure Logic", "Mathematical Optimization", "Conceptual System Design", "Pseudocode Refinement"],
199
- label="Type of Problem/Algorithm",
200
- value="Python Algorithm"
201
- )
202
- problem_desc_tb = gr.Textbox(
203
- lines=5,
204
- label="Problem Description / Desired Outcome",
205
- placeholder="e.g., 'Develop a Python function to efficiently find all prime factors of a large integer.' OR 'Design a heuristic for optimizing delivery routes in a dense urban area.'"
206
- )
207
- initial_hints_tb = gr.Textbox(
208
- lines=3,
209
- label="Initial Thoughts / Constraints / Seed Ideas (Optional)",
210
- placeholder="e.g., 'Consider dynamic programming.' OR 'Avoid brute-force if N > 1000.' OR 'Must be implementable in Verilog later.'"
211
- )
212
-
213
- gr.Markdown("## ⚙️ 2. Configure The Forge")
214
- model_select_dd = gr.Dropdown(
215
- choices=list(AVAILABLE_MODELS.keys()),
216
- value=list(AVAILABLE_MODELS.keys())[0], # Default to first model in dict
217
- label="Select LLM Core Model"
218
- )
219
- num_solutions_slider = gr.Slider(1, 5, value=3, step=1, label="Number of Initial Solutions (Genesis Engine)")
220
-
221
- with gr.Accordion("Advanced LLM Parameters (Tune with Caution!)", open=False):
222
- gr.Markdown("Higher temperature = more creative/random. Lower = more focused/deterministic.")
223
- with gr.Row():
224
- gen_temp_slider = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Genesis Temp")
225
- gen_max_tokens_slider = gr.Slider(100, 1000, value=350, step=50, label="Genesis Max Tokens")
226
- with gr.Row():
227
- eval_temp_slider = gr.Slider(0.0, 1.5, value=0.5, step=0.1, label="Crucible Temp")
228
- eval_max_tokens_slider = gr.Slider(100, 500, value=200, step=50, label="Crucible Max Tokens")
229
- with gr.Row():
230
- evolve_temp_slider = gr.Slider(0.0, 1.5, value=0.8, step=0.1, label="Evolution Temp")
231
- evolve_max_tokens_slider = gr.Slider(100, 1000, value=400, step=50, label="Evolution Max Tokens")
232
-
233
- submit_btn = gr.Button("🚀 ENGAGE ALGOFORGE PRIME™ 🚀", variant="primary", size="lg")
234
-
235
- with gr.Column(scale=2):
236
- gr.Markdown("## 🔥 3. The Forge's Output")
237
- with gr.Tabs():
238
- with gr.TabItem("📜 Genesis Candidates & Crucible Verdicts"):
239
- output_initial_solutions_md = gr.Markdown(label="LLM-Generated Initial Solutions & Evaluations")
240
- with gr.TabItem("🏆 Champion Candidate (Pre-Evolution)"):
241
- output_best_solution_md = gr.Markdown(label="Evaluator's Top Pick")
242
- with gr.TabItem("🌟 Evolved Artifact"):
243
- output_evolved_solution_md = gr.Markdown(label="Refined Solution from the Evolutionary Forge")
244
- with gr.TabItem("🛠️ LLM Interaction Log (SRE View)"):
245
- output_interaction_log_md = gr.Markdown(label="Detailed Log of LLM Prompts & (Snippets of) Responses")
246
-
247
- submit_btn.click(
248
- fn=run_algoforge_simulation,
249
- inputs=[
250
- problem_type_dd, problem_desc_tb, initial_hints_tb,
251
- num_solutions_slider, model_select_dd,
252
- gen_temp_slider, gen_max_tokens_slider,
253
- eval_temp_slider, eval_max_tokens_slider,
254
- evolve_temp_slider, evolve_max_tokens_slider
255
- ],
256
- outputs=[
257
- output_initial_solutions_md, output_best_solution_md,
258
- output_evolved_solution_md, output_interaction_log_md
259
- ]
260
- )
261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
  gr.Markdown("---")
263
  gr.Markdown(
264
- "**Disclaimer:** As the architect of this marvel, I must remind you: this is a *conceptual demonstration*. Real AI-driven algorithm discovery is vastly more complex and resource-intensive. LLM outputs are probabilistic and require rigorous human oversight and verification. This tool is for inspiration and exploration, not production deployment of unverified algorithms. Handle with brilliance and caution!"
265
- "\n\n*Powered by Gradio, Hugging Face Inference API, and the boundless spirit of innovation.*"
266
  )
267
 
268
- # To launch this magnificent creation:
269
  if __name__ == "__main__":
270
- if not HF_TOKEN:
271
- print("="*80)
272
- print("WARNING: HF_TOKEN environment variable not set.")
273
- print("AlgoForge Prime™ requires this token to communicate with Hugging Face LLMs.")
274
- print("Please set it in your environment or Space Secrets.")
275
- print("The UI will load, but LLM functionality will be disabled.")
276
- print("="*80)
277
- demo.launch(debug=True) # Debug=True is useful for local development
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient # Still needed for HF fallbacks
3
+ import google.generativeai as genai # For Google Gemini API
4
  import os
5
+ import random
6
 
7
  # --- ALGOFORGE PRIME™ CONFIGURATION & SECRETS ---
 
 
8
 
9
+ # Google API Key - ESSENTIAL for Google Gemini Pro/Flash models via their API
10
+ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
11
+ GEMINI_API_CONFIGURED = False
12
+ if GOOGLE_API_KEY:
13
+ try:
14
+ genai.configure(api_key=GOOGLE_API_KEY)
15
+ GEMINI_API_CONFIGURED = True
16
+ print("INFO: Google Gemini API configured successfully.")
17
+ except Exception as e:
18
+ print(f"ERROR: Failed to configure Google Gemini API with provided key: {e}. Gemini models will be unavailable.")
19
+ # GOOGLE_API_KEY = None # Effectively disables it if config fails
20
+ else:
21
+ print("WARNING: GOOGLE_API_KEY not found in Space Secrets. Google Gemini API models will be disabled.")
22
+
23
+ # Hugging Face Token - For Hugging Face hosted models (fallbacks or alternatives)
24
+ HF_TOKEN = os.getenv("HF_TOKEN")
25
+ HF_API_CONFIGURED = False
26
  if not HF_TOKEN:
27
+ print("WARNING: HF_TOKEN not found in Space Secrets. Calls to Hugging Face hosted models will be disabled.")
28
+ else:
29
+ HF_API_CONFIGURED = True
30
+ print("INFO: HF_TOKEN detected. Hugging Face hosted models can be used.")
31
+
32
+ # Initialize Hugging Face Inference Client (conditionally)
33
+ hf_inference_client = None
34
+ if HF_API_CONFIGURED:
35
+ try:
36
+ hf_inference_client = InferenceClient(token=HF_TOKEN)
37
+ print("INFO: Hugging Face InferenceClient initialized successfully.")
38
+ except Exception as e:
39
+ print(f"ERROR: Failed to initialize Hugging Face InferenceClient: {e}. HF models will be unavailable.")
40
+ HF_API_CONFIGURED = False # Mark as not configured if client init fails
41
+
42
+ # --- MODEL DEFINITIONS ---
43
+ AVAILABLE_MODELS = {}
44
+ DEFAULT_MODEL_KEY = None
45
+
46
+ # Populate with Gemini models if API is configured
47
+ if GEMINI_API_CONFIGURED:
48
+ AVAILABLE_MODELS.update({
49
+ "Google Gemini 1.5 Flash (API - Fast, Recommended)": {"id": "gemini-1.5-flash-latest", "type": "google_gemini"},
50
+ "Google Gemini 1.0 Pro (API)": {"id": "gemini-1.0-pro-latest", "type": "google_gemini"},
51
+ })
52
+ DEFAULT_MODEL_KEY = "Google Gemini 1.5 Flash (API - Fast, Recommended)"
53
+
54
+ # Populate with Hugging Face models if API is configured (as alternatives/fallbacks)
55
+ if HF_API_CONFIGURED:
56
+ AVAILABLE_MODELS.update({
57
+ "Google Gemma 2B (HF - Quick Test)": {"id": "google/gemma-2b-it", "type": "hf"},
58
+ "Mistral 7B Instruct (HF)": {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf"},
59
+ "CodeLlama 7B Instruct (HF)": {"id": "codellama/CodeLlama-7b-Instruct-hf", "type": "hf"},
60
+ })
61
+ if not DEFAULT_MODEL_KEY: # If Gemini isn't configured, default to an HF model
62
+ DEFAULT_MODEL_KEY = "Google Gemma 2B (HF - Quick Test)"
63
+
64
+ # Absolute fallback if no models could be configured
65
+ if not AVAILABLE_MODELS:
66
+ print("CRITICAL ERROR: No models could be configured. Neither Google API Key nor HF Token seem to be working or present.")
67
+ # Add a dummy entry to prevent crashes, though the app will be non-functional
68
+ AVAILABLE_MODELS["No Models Available"] = {"id": "dummy", "type": "none"}
69
+ DEFAULT_MODEL_KEY = "No Models Available"
70
+ elif not DEFAULT_MODEL_KEY: # If somehow DEFAULT_MODEL_KEY is still None but AVAILABLE_MODELS is not empty
71
+ DEFAULT_MODEL_KEY = list(AVAILABLE_MODELS.keys())[0]
72
+
73
 
74
  # --- CORE AI ENGINEERING: LLM INTERACTION FUNCTIONS ---
75
 
76
+ def call_huggingface_llm_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt=None):
77
+ if not HF_API_CONFIGURED or not hf_inference_client:
78
+ return "ERROR: Hugging Face API is not configured (HF_TOKEN missing or client init failed)."
 
 
 
 
79
 
80
+ if system_prompt:
 
81
  full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt_text} [/INST]"
82
+ else:
83
+ full_prompt = prompt_text
84
+ try:
85
+ use_sample = temperature > 0.0
86
+ response_text = hf_inference_client.text_generation(
87
+ full_prompt, model=model_id, max_new_tokens=max_new_tokens,
88
+ temperature=temperature if use_sample else None,
89
+ do_sample=use_sample, stream=False
90
+ )
91
+ return response_text
92
+ except Exception as e:
93
+ error_details = f"Error Type: {type(e).__name__}, Message: {str(e)}"
94
+ print(f"Hugging Face LLM API Call Error ({model_id}): {error_details}")
95
+ return f"LLM API Error (Hugging Face Model: {model_id}). Details: {error_details}. Check Space logs."
96
 
97
+ def call_google_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=400, system_prompt=None):
98
+ if not GEMINI_API_CONFIGURED:
99
+ return "ERROR: Google Gemini API is not configured (GOOGLE_API_KEY missing or config failed)."
100
 
101
  try:
102
+ # For gemini-1.5-flash and newer, system_instruction is the preferred way.
103
+ # For older gemini-1.0-pro, you might need to structure the 'contents' array.
104
+ model_instance = genai.GenerativeModel(model_name=model_id, system_instruction=system_prompt if system_prompt else None)
105
+
106
+ generation_config = genai.types.GenerationConfig(
107
+ temperature=temperature,
108
+ max_output_tokens=max_new_tokens
109
  )
110
+ # Simple user prompt if system_instruction is handled by GenerativeModel
111
+ response = model_instance.generate_content(
112
+ prompt_text, # Just the user prompt
113
+ generation_config=generation_config,
114
+ stream=False
115
+ )
116
+
117
+ # Robust check for response content and safety blocks
118
+ if response.prompt_feedback and response.prompt_feedback.block_reason:
119
+ block_reason_msg = response.prompt_feedback.block_reason_message or response.prompt_feedback.block_reason
120
+ print(f"Google Gemini API: Prompt blocked. Reason: {block_reason_msg}")
121
+ return f"Google Gemini API Error: Your prompt was blocked. Reason: {block_reason_msg}. Try rephrasing."
122
+
123
+ if not response.candidates or not response.candidates[0].content.parts:
124
+ # Check if any candidate has content
125
+ candidate_had_content = any(cand.content and cand.content.parts for cand in response.candidates)
126
+ if not candidate_had_content:
127
+ finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
128
+ # Specific check for safety if that's the finish reason
129
+ if str(finish_reason).upper() == "SAFETY":
130
+ print(f"Google Gemini API: Response generation stopped due to safety settings. Finish Reason: {finish_reason}")
131
+ return f"Google Gemini API Error: Response generation stopped due to safety settings. Finish Reason: {finish_reason}. Try a different prompt or adjust safety settings in your Google AI Studio if possible."
132
+ else:
133
+ print(f"Google Gemini API: Empty response or no content parts. Finish Reason: {finish_reason}")
134
+ return f"Google Gemini API Error: Empty response or no content generated. Finish Reason: {finish_reason}. The model might not have had anything to say or the request was malformed."
135
+
136
+ # Assuming the first candidate has the primary response
137
+ return response.candidates[0].content.parts[0].text
138
+
139
  except Exception as e:
140
+ error_details = f"Error Type: {type(e).__name__}, Message: {str(e)}"
141
+ print(f"Google Gemini API Call Error ({model_id}): {error_details}")
142
+ # Provide more specific feedback for common errors if possible
143
+ if "API key not valid" in str(e) or "PERMISSION_DENIED" in str(e):
144
+ return f"LLM API Error (Google Gemini Model: {model_id}). Details: API key invalid or permission denied. Please check your GOOGLE_API_KEY and ensure the Gemini API is enabled for your project. Original error: {error_details}"
145
+ elif "Could not find model" in str(e):
146
+ return f"LLM API Error (Google Gemini Model: {model_id}). Details: Model ID '{model_id}' not found or not accessible with your key. Original error: {error_details}"
147
+ return f"LLM API Error (Google Gemini Model: {model_id}). Details: {error_details}. Check Space logs."
148
+
149
 
150
  # --- ALGOFORGE PRIME™ - THE GRAND ORCHESTRATOR ---
151
+ # (This function remains largely the same as the previous "full rewrite",
152
+ # as the dispatch_llm_call logic handles routing to the correct API call function.
153
+ # I will include it for completeness but highlight any minor adjustments if needed.)
154
 
155
  def run_algoforge_simulation(
156
  problem_type, problem_description, initial_hints,
 
160
  evolve_temp, evolve_max_tokens
161
  ):
162
  if not problem_description:
163
+ return "ERROR: Problem Description is the lifeblood of innovation! Please provide it.", "", "", ""
164
 
165
+ model_info = AVAILABLE_MODELS.get(selected_model_key)
166
+ if not model_info or model_info["type"] == "none":
167
+ return f"ERROR: No valid model selected or available. Please check API key configurations. Selected: '{selected_model_key}'", "", "", ""
168
+
169
+ model_id = model_info["id"]
170
+ model_type = model_info["type"]
171
+
172
+ log_entries = [f"**AlgoForge Prime™ Initializing...**\nSelected Model Core: {model_id} ({selected_model_key} - Type: {model_type})\nProblem Type: {problem_type}"]
173
+
174
+ def dispatch_llm_call(prompt, system_p, temp, max_tok, stage_name=""):
175
+ log_entries.append(f" Dispatching to {model_type.upper()} API for {stage_name} (Model: {model_id}):\n Prompt (snippet): {prompt[:100]}...")
176
+ if system_p: log_entries[-1] += f"\n System Prompt (snippet): {system_p[:100]}..."
177
+
178
+ if model_type == "hf":
179
+ if not HF_API_CONFIGURED: return "ERROR: HF_TOKEN not configured or InferenceClient failed."
180
+ result = call_huggingface_llm_api(prompt, model_id, temp, max_tok, system_p)
181
+ elif model_type == "google_gemini":
182
+ if not GEMINI_API_CONFIGURED: return "ERROR: GOOGLE_API_KEY not configured or Gemini API setup failed."
183
+ result = call_google_gemini_api(prompt, model_id, temp, max_tok, system_p)
184
+ else:
185
+ result = f"ERROR: Unknown model type '{model_type}' for selected model."
186
+
187
+ log_entries.append(f" {model_type.upper()} API Response ({stage_name} - Snippet): {str(result)[:150]}...")
188
+ return result
189
 
190
+ # STAGE 1: GENESIS
191
  log_entries.append("\n**Stage 1: Genesis Engine - Generating Initial Solution Candidates...**")
192
  generated_solutions_raw = []
193
+ system_prompt_generate = f"You are an expert {problem_type.lower().replace(' ', '_')} algorithm designer. Your goal is to brainstorm multiple diverse solutions to the user's problem."
194
  for i in range(num_initial_solutions):
195
+ user_prompt_generate = (
196
  f"Problem Description: \"{problem_description}\"\n"
197
  f"Consider these initial thoughts/constraints: \"{initial_hints if initial_hints else 'None'}\"\n"
198
  f"Please provide one distinct and complete solution/algorithm for this problem. "
199
  f"This is solution attempt #{i+1} of {num_initial_solutions}. Try a different approach if possible."
200
  )
201
+ solution_text = dispatch_llm_call(user_prompt_generate, system_prompt_generate, gen_temp, gen_max_tokens, f"Genesis Attempt {i+1}")
 
202
  generated_solutions_raw.append(solution_text)
 
203
 
204
+ if not any(sol and not str(sol).startswith("ERROR:") and not str(sol).startswith("LLM API Error") for sol in generated_solutions_raw):
205
+ log_entries.append(" Genesis Engine failed to produce viable candidates or all calls resulted in errors.")
206
+ initial_sol_output = "No valid solutions generated by the Genesis Engine. All attempts failed or returned errors."
207
+ if generated_solutions_raw:
208
+ initial_sol_output += "\n\nErrors Encountered:\n" + "\n".join([f"- {str(s)}" for s in generated_solutions_raw if str(s).startswith("ERROR") or str(s).startswith("LLM API Error")])
209
+ return initial_sol_output, "", "", "\n".join(log_entries)
210
 
211
+ # STAGE 2: CRITIQUE
212
  log_entries.append("\n**Stage 2: Critique Crucible - Evaluating Candidates...**")
213
  evaluated_solutions_display = []
214
  evaluated_sols_data = []
215
+ system_prompt_evaluate = "You are a highly critical and insightful AI algorithm evaluator. Assess the provided solution based on clarity, potential correctness, and perceived efficiency. Provide a concise critique and a numerical score from 1 (poor) to 10 (excellent). CRITICALLY: You MUST include the score in the format 'Score: X/10' where X is an integer."
216
+
217
+ for i, sol_text_candidate in enumerate(generated_solutions_raw):
218
+ sol_text = str(sol_text_candidate)
219
+ critique_text = f"Critique for Candidate {i+1}" # Placeholder
220
+ score = 0
221
 
222
+ if sol_text.startswith("ERROR:") or sol_text.startswith("LLM API Error"):
223
+ critique_text = f"Candidate {i+1} could not be properly generated due to an earlier API error: {sol_text}"
 
224
  score = 0
225
  else:
226
+ user_prompt_evaluate = (
227
+ f"Problem Reference (for context only, do not repeat in output): \"{problem_description[:150]}...\"\n\n"
228
+ f"Now, evaluate the following proposed solution:\n```\n{sol_text}\n```\n"
229
+ f"Provide your critique and ensure you output a score in the format 'Score: X/10'."
230
  )
231
+ evaluation_text = str(dispatch_llm_call(user_prompt_evaluate, system_prompt_evaluate, eval_temp, eval_max_tokens, f"Critique Candidate {i+1}"))
 
 
232
 
233
+ critique_text = evaluation_text # Default to full response
234
+ if evaluation_text.startswith("ERROR:") or evaluation_text.startswith("LLM API Error"):
235
+ critique_text = f"Error during evaluation of Candidate {i+1}: {evaluation_text}"
236
+ score = 0
237
+ else:
238
+ # Try to parse score
239
+ score_match_found = False
240
+ if "Score:" in evaluation_text:
241
+ try:
242
+ # More robust parsing for "Score: X/10" or "Score: X"
243
+ score_part_full = evaluation_text.split("Score:")[1].strip()
244
+ score_num_str = score_part_full.split("/")[0].split()[0].strip() # Get number before / or space
245
+ parsed_score_val = int(score_num_str)
246
+ score = max(1, min(parsed_score_val, 10)) # Clamp score
247
+ score_match_found = True
248
+ except (ValueError, IndexError, TypeError):
249
+ log_entries.append(f" Warning: Could not parse score accurately from: '{evaluation_text}' despite 'Score:' marker.")
250
+
251
+ if not score_match_found: # Fallback if parsing fails or marker missing
252
+ log_entries.append(f" Warning: 'Score:' marker missing or unparsable in evaluation: '{evaluation_text}'. Assigning random score.")
253
+ score = random.randint(3, 7)
254
+
255
+ evaluated_solutions_display.append(f"**Candidate {i+1}:**\n```text\n{sol_text}\n```\n**Crucible Verdict (Score: {score}/10):**\n{critique_text}\n---")
256
+ evaluated_sols_data.append({"id": i+1, "solution": sol_text, "score": score, "critique": critique_text})
257
+
258
+ if not evaluated_sols_data or all(s['score'] == 0 for s in evaluated_sols_data):
259
+ log_entries.append(" Critique Crucible yielded no valid evaluations or all solutions had errors.")
260
+ current_output = "\n\n".join(evaluated_solutions_display) if evaluated_solutions_display else "Generation might be OK, but evaluation failed for all candidates."
261
+ return current_output, "", "", "\n".join(log_entries)
262
+
263
+ # STAGE 3: SELECTION
264
  evaluated_sols_data.sort(key=lambda x: x["score"], reverse=True)
265
  best_initial_solution_data = evaluated_sols_data[0]
266
  log_entries.append(f"\n**Stage 3: Champion Selected - Candidate {best_initial_solution_data['id']} (Score: {best_initial_solution_data['score']}) chosen for evolution.**")
267
+ if best_initial_solution_data['solution'].startswith("ERROR:") or best_initial_solution_data['solution'].startswith("LLM API Error"):
268
+ log_entries.append(" ERROR: Selected champion solution itself is an error message. Cannot evolve.")
269
+ return "\n\n".join(evaluated_solutions_display), f"Selected champion was an error: {best_initial_solution_data['solution']}", "Cannot evolve an error.", "\n".join(log_entries)
270
 
271
+ # STAGE 4: EVOLUTION
272
  log_entries.append("\n**Stage 4: Evolutionary Forge - Refining the Champion...**")
273
+ system_prompt_evolve = f"You are an elite AI algorithm optimizer and refiner. Your task is to take the provided solution and make it significantly better. Focus on {problem_type.lower()} best practices, improve efficiency or clarity, fix any potential errors, and expand on it if appropriate. Explain the key improvements you've made clearly."
274
+ user_prompt_evolve = (
275
+ f"Original Problem (for context): \"{problem_description}\"\n\n"
276
+ f"The current leading solution (which had a score of {best_initial_solution_data['score']}/10) is:\n```\n{best_initial_solution_data['solution']}\n```\n"
277
+ f"The original critique for this solution was: \"{best_initial_solution_data['critique']}\"\n\n"
278
+ f"Your mission: Evolve this solution. Make it demonstrably superior. If the original solution was just a sketch, flesh it out. If it had flaws, fix them. If it was good, make it great. Explain the key improvements you've made as part of your response."
279
  )
280
+ evolved_solution_text = str(dispatch_llm_call(user_prompt_evolve, system_prompt_evolve, evolve_temp, evolve_max_tokens, "Evolution"))
281
+
282
+ if evolved_solution_text.startswith("ERROR:") or evolved_solution_text.startswith("LLM API Error"):
283
+ log_entries.append(" ERROR: Evolution step resulted in an API error.")
284
+ evolved_solution_output_md = f"**Evolution Failed:**\n{evolved_solution_text}"
285
+ else:
286
+ evolved_solution_output_md = f"**✨ AlgoForge Prime™ Evolved Artifact ✨:**\n```text\n{evolved_solution_text}\n```"
287
 
288
+ # FINAL OUTPUT ASSEMBLY
289
  initial_solutions_output_md = "\n\n".join(evaluated_solutions_display)
290
  best_solution_output_md = (
291
  f"**Champion Candidate {best_initial_solution_data['id']} (Original Score: {best_initial_solution_data['score']}/10):**\n"
292
  f"```text\n{best_initial_solution_data['solution']}\n```\n"
293
  f"**Original Crucible Verdict:**\n{best_initial_solution_data['critique']}"
294
  )
 
295
 
296
  log_entries.append("\n**AlgoForge Prime™ Cycle Complete.**")
297
  final_log_output = "\n".join(log_entries)
298
 
299
  return initial_solutions_output_md, best_solution_output_md, evolved_solution_output_md, final_log_output
300
 
301
+ # --- GRADIO UI ---
302
  intro_markdown = """
303
+ # ✨ AlgoForge Prime™ ✨: Conceptual Algorithmic Evolution (Gemini Focused)
304
+ Welcome! This system demonstrates AI-assisted algorithm discovery and refinement, with a primary focus on **Google Gemini API models**.
305
+ Hugging Face hosted models are available as alternatives if configured.
306
+ **This is a conceptual demo, not AlphaEvolve itself.**
307
+
308
+ **API Keys Required in Space Secrets:**
309
+ - `GOOGLE_API_KEY` (Primary): For Google Gemini API models (e.g., Gemini 1.5 Flash, Gemini 1.0 Pro).
310
+ - `HF_TOKEN` (Secondary): For Hugging Face hosted models (e.g., Gemma on HF, Mistral).
311
+ If a key is missing, corresponding models will be unusable or limited.
 
 
312
  """
313
 
314
+ token_status_md = ""
315
+ if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED:
316
+ token_status_md = "<p style='color:red;'>⚠️ CRITICAL: NEITHER GOOGLE_API_KEY NOR HF_TOKEN are configured or working. The application will not function.</p>"
317
+ else:
318
+ if GEMINI_API_CONFIGURED:
319
+ token_status_md += "<p style='color:green;'>✅ Google Gemini API Key detected and configured.</p>"
320
+ else:
321
+ token_status_md += "<p style='color:orange;'>⚠️ GOOGLE_API_KEY missing or failed to configure. Gemini API models disabled.</p>"
322
+
323
+ if HF_API_CONFIGURED:
324
+ token_status_md += "<p style='color:green;'>✅ Hugging Face API Token detected and client initialized.</p>"
325
+ else:
326
+ token_status_md += "<p style='color:orange;'>⚠️ HF_TOKEN missing or client failed to initialize. Hugging Face models disabled.</p>"
327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
 
329
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="AlgoForge Prime™ (Gemini)") as demo: # Changed theme
330
+ gr.Markdown(intro_markdown)
331
+ gr.HTML(token_status_md)
332
+
333
+ if not AVAILABLE_MODELS or DEFAULT_MODEL_KEY == "No Models Available":
334
+ gr.Markdown("<h2 style='color:red;'>No models are available. Please check your API key configurations in Space Secrets and restart the Space.</h2>")
335
+ else:
336
+ with gr.Row():
337
+ with gr.Column(scale=1):
338
+ gr.Markdown("## 💡 1. Define the Challenge")
339
+ problem_type_dd = gr.Dropdown(
340
+ ["Python Algorithm", "Data Structure Logic", "Mathematical Optimization", "Conceptual System Design", "Pseudocode Refinement", "Verilog Snippet Idea", "General Brainstorming"],
341
+ label="Type of Problem/Algorithm", value="Python Algorithm"
342
+ )
343
+ problem_desc_tb = gr.Textbox(
344
+ lines=5, label="Problem Description / Desired Outcome",
345
+ placeholder="e.g., 'Efficient Python function for Fibonacci sequence using memoization.'"
346
+ )
347
+ initial_hints_tb = gr.Textbox(
348
+ lines=3, label="Initial Thoughts / Constraints / Seed Ideas (Optional)",
349
+ placeholder="e.g., 'Focus on clarity and correctness.' OR 'Target O(n) complexity.'"
350
+ )
351
+
352
+ gr.Markdown("## ⚙️ 2. Configure The Forge")
353
+ model_select_dd = gr.Dropdown(
354
+ choices=list(AVAILABLE_MODELS.keys()),
355
+ value=DEFAULT_MODEL_KEY if DEFAULT_MODEL_KEY in AVAILABLE_MODELS else (list(AVAILABLE_MODELS.keys())[0] if AVAILABLE_MODELS else None), # Ensure default is valid
356
+ label="Select LLM Core Model"
357
+ )
358
+ num_solutions_slider = gr.Slider(1, 4, value=2, step=1, label="Number of Initial Solutions (Genesis Engine)")
359
+
360
+ with gr.Accordion("Advanced LLM Parameters", open=False):
361
+ with gr.Row():
362
+ gen_temp_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Genesis Temp") # Gemini often uses 0-1 range
363
+ gen_max_tokens_slider = gr.Slider(100, 2048, value=512, step=64, label="Genesis Max Tokens")
364
+ with gr.Row():
365
+ eval_temp_slider = gr.Slider(0.0, 1.0, value=0.4, step=0.05, label="Crucible Temp")
366
+ eval_max_tokens_slider = gr.Slider(100, 1024, value=300, step=64, label="Crucible Max Tokens")
367
+ with gr.Row():
368
+ evolve_temp_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Evolution Temp")
369
+ evolve_max_tokens_slider = gr.Slider(100, 2048, value=768, step=64, label="Evolution Max Tokens")
370
+
371
+ submit_btn = gr.Button("🚀 ENGAGE ALGOFORGE PRIME™ 🚀", variant="primary", size="lg")
372
+
373
+ with gr.Column(scale=2):
374
+ gr.Markdown("## 🔥 3. The Forge's Output")
375
+ with gr.Tabs():
376
+ with gr.TabItem("📜 Genesis Candidates & Crucible Verdicts"):
377
+ output_initial_solutions_md = gr.Markdown(label="LLM-Generated Initial Solutions & Evaluations")
378
+ with gr.TabItem("🏆 Champion Candidate (Pre-Evolution)"):
379
+ output_best_solution_md = gr.Markdown(label="Evaluator's Top Pick")
380
+ with gr.TabItem("🌟 Evolved Artifact"):
381
+ output_evolved_solution_md = gr.Markdown(label="Refined Solution from the Evolutionary Forge")
382
+ with gr.TabItem("🛠️ Interaction Log (Dev View)"):
383
+ output_interaction_log_md = gr.Markdown(label="Detailed Log of LLM Prompts & Responses")
384
+
385
+ submit_btn.click(
386
+ fn=run_algoforge_simulation,
387
+ inputs=[
388
+ problem_type_dd, problem_desc_tb, initial_hints_tb,
389
+ num_solutions_slider, model_select_dd,
390
+ gen_temp_slider, gen_max_tokens_slider,
391
+ eval_temp_slider, eval_max_tokens_slider,
392
+ evolve_temp_slider, evolve_max_tokens_slider
393
+ ],
394
+ outputs=[
395
+ output_initial_solutions_md, output_best_solution_md,
396
+ output_evolved_solution_md, output_interaction_log_md
397
+ ]
398
+ )
399
  gr.Markdown("---")
400
  gr.Markdown(
401
+ "**Disclaimer:** This is a conceptual demo. LLM outputs require rigorous human oversight. Use for inspiration and exploration."
402
+ "\n*Powered by Gradio, Google Gemini API, Hugging Face Inference API, and innovation.*"
403
  )
404
 
 
405
  if __name__ == "__main__":
406
+ print("="*80)
407
+ print("AlgoForge Prime™ (Gemini Focused) Starting...")
408
+ if not GEMINI_API_CONFIGURED: print("REMINDER: GOOGLE_API_KEY missing or config failed. Gemini API models disabled.")
409
+ if not HF_API_CONFIGURED: print("REMINDER: HF_TOKEN missing or client init failed. Hugging Face models disabled.")
410
+ if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED: print("CRITICAL: NEITHER API IS CONFIGURED. APP WILL NOT FUNCTION.")
411
+ print(f"UI will attempt to default to model key: {DEFAULT_MODEL_KEY}")
412
+ print(f"Available models for UI: {list(AVAILABLE_MODELS.keys())}")
413
+ print("="*80)
414
+ demo.launch(debug=True, server_name="0.0.0.0")