Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,230 +1,277 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
import os
|
|
|
4 |
|
5 |
-
# ---
|
6 |
-
#
|
7 |
-
|
8 |
-
# The true EvoForge Prime would connect to a distributed network of specialized AI agents.
|
9 |
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
# from huggingface_hub import InferenceClient
|
16 |
-
# COGNITIVE_CORE_CLIENT = InferenceClient(token=HF_TOKEN)
|
17 |
-
# DEFAULT_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2" # Or your preferred model
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
responses = [f"// EvoForge Candidate Solution {i+1} (Simulated)\n// Problem: {prompt_text[:50]}...\n// Approach: Employing principle of {['recursion', 'iteration', 'divide and conquer', 'dynamic programming'][i%4]}." for i in range(num_sequences)]
|
33 |
-
return responses
|
34 |
-
elif task_description == "solution_evaluation":
|
35 |
-
# In reality, you'd parse score and detailed critique
|
36 |
-
score = len(prompt_text) % 10 + 1 # Dummy score
|
37 |
-
critique = f"EvoForge Analysis: Candidate exhibits potential. Clarity: {score-1}/10. Perceived Efficiency: {score}/10. Novelty: {(score+1)%10}/10. Overall Score: {score}/10."
|
38 |
-
return critique, score
|
39 |
-
elif task_description == "solution_refinement":
|
40 |
-
return f"// EvoForge Synthesized Advancement (Simulated)\n// Original concept: {prompt_text[:60]}...\n// Refinement: Optimized data structures and streamlined control flow for enhanced performance and elegance."
|
41 |
-
else:
|
42 |
-
return [f"Cognitive Core Response to: {prompt_text[:70]}... (Simulation)"]
|
43 |
-
# --- END LLM INTEGRATION POINT ---
|
44 |
-
|
45 |
-
|
46 |
-
# --- EVOFORGE PRIME - CORE LOGIC MODULE ---
|
47 |
-
def orchestrate_evolutionary_cycle(problem_domain, problem_statement, cognitive_catalysts, divergence_factor):
|
48 |
-
if not problem_statement:
|
49 |
-
return "A problem statement is the seed of innovation. Please provide one.", "", "", "", ""
|
50 |
-
|
51 |
-
master_log = f"## EvoForge Prime - Cycle Report ##\n\n"
|
52 |
-
master_log += f"**Domain:** {problem_domain}\n"
|
53 |
-
master_log += f"**Problem Statement:** {problem_statement}\n"
|
54 |
-
master_log += f"**Cognitive Catalysts (Hints):** {cognitive_catalysts if cognitive_catalysts else 'None provided'}\n"
|
55 |
-
master_log += f"**Initial Solution Divergence Factor:** {divergence_factor}\n\n"
|
56 |
-
|
57 |
-
# STAGE 1: Algorithmic Genesis - Generating Diverse Solution Candidates
|
58 |
-
master_log += "### Stage 1: Algorithmic Genesis ###\n"
|
59 |
-
genesis_prompt = f"""
|
60 |
-
As an advanced AI algorithm designer, address the following problem:
|
61 |
-
Problem Domain: {problem_domain}
|
62 |
-
Problem Statement: "{problem_statement}"
|
63 |
-
Consider these initial thoughts/constraints: "{cognitive_catalysts if cognitive_catalysts else 'N/A'}"
|
64 |
-
|
65 |
-
Generate {divergence_factor} distinct and innovative algorithmic solutions or high-level approaches.
|
66 |
-
For each, provide a conceptual outline or pseudo-code.
|
67 |
"""
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
if not initial_candidates_raw:
|
72 |
-
return master_log + "Error: Cognitive Core failed to generate initial candidates.", "", "", ""
|
73 |
-
|
74 |
-
# STAGE 2: Heuristic Evaluation Matrix - Assessing Candidate Viability
|
75 |
-
master_log += "\n### Stage 2: Heuristic Evaluation Matrix ###\n"
|
76 |
-
evaluated_candidates_display = []
|
77 |
-
evaluated_candidates_data = []
|
78 |
-
|
79 |
-
for idx, candidate_code in enumerate(initial_candidates_raw):
|
80 |
-
evaluation_prompt = f"""
|
81 |
-
Critically evaluate the following algorithmic solution candidate for the problem: "{problem_statement}".
|
82 |
-
Solution Candidate {idx+1}:
|
83 |
-
```
|
84 |
-
{candidate_code}
|
85 |
-
```
|
86 |
-
Assess its potential correctness, efficiency, clarity, and novelty. Provide a structured critique and assign an overall viability score from 1 (low) to 10 (high).
|
87 |
-
Format:
|
88 |
-
Critique: [Your detailed analysis]
|
89 |
-
Score: [Score_Value]
|
90 |
-
"""
|
91 |
-
critique, score = invoke_cognitive_core(evaluation_prompt, "solution_evaluation")
|
92 |
-
evaluated_candidates_display.append(f"**Candidate {idx+1} (Score: {score}/10):**\n```\n{candidate_code}\n```\n**EvoForge Analysis:** {critique}\n---\n")
|
93 |
-
evaluated_candidates_data.append({"solution": candidate_code, "score": score, "critique": critique, "id": idx+1})
|
94 |
-
master_log += f"Evaluated Candidate {idx+1}. Score: {score}/10.\n"
|
95 |
-
|
96 |
-
if not evaluated_candidates_data:
|
97 |
-
return master_log + "\n".join(evaluated_candidates_display), "Error: No candidates available for evaluation.", "", ""
|
98 |
-
|
99 |
-
# STAGE 3: Apex Selection - Identifying the Most Promising Evolutionary Path
|
100 |
-
master_log += "\n### Stage 3: Apex Selection ###\n"
|
101 |
-
evaluated_candidates_data.sort(key=lambda x: x["score"], reverse=True)
|
102 |
-
apex_candidate_data = evaluated_candidates_data[0]
|
103 |
-
apex_candidate_solution = apex_candidate_data["solution"]
|
104 |
-
apex_candidate_critique = apex_candidate_data["critique"]
|
105 |
-
apex_candidate_score = apex_candidate_data["score"]
|
106 |
-
master_log += f"Apex Candidate (ID: {apex_candidate_data['id']}) selected with score {apex_candidate_score}/10.\n"
|
107 |
-
|
108 |
-
# STAGE 4: Algorithmic Refinement - Synthesizing an Advanced Iteration
|
109 |
-
master_log += "\n### Stage 4: Algorithmic Refinement ###\n"
|
110 |
-
refinement_prompt = f"""
|
111 |
-
Given the problem: "{problem_statement}"
|
112 |
-
And the current leading solution candidate (Score: {apex_candidate_score}/10):
|
113 |
-
```
|
114 |
-
{apex_candidate_solution}
|
115 |
-
```
|
116 |
-
And its evaluation: "{apex_candidate_critique}"
|
117 |
-
|
118 |
-
Refine this solution. Enhance its efficiency, elegance, robustness, or explore a novel optimization.
|
119 |
-
Explain the key improvements made in the refined version.
|
120 |
"""
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
... Refine this solution. Enhance its efficiency, elegance, robustness ...
|
155 |
-
Leading solution candidate (Score: {apex_candidate_score}/10):
|
156 |
-
{apex_candidate_solution[:150]}...
|
157 |
-
And its evaluation: "{apex_candidate_critique[:100]}..."
|
158 |
-
```
|
159 |
-
--- End of Blueprint ---
|
160 |
-
"""
|
161 |
|
162 |
-
return initial_solutions_output_md,
|
163 |
|
164 |
-
# ---
|
165 |
-
|
166 |
-
#
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
**
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
3. **Apex Selection:** The most promising candidate is identified.
|
174 |
-
4. **Refinement:** The Cognitive Core attempts to enhance the apex candidate.
|
175 |
|
176 |
-
**
|
177 |
"""
|
178 |
|
179 |
-
with gr.Blocks(theme=gr.themes.
|
180 |
-
gr.Markdown(
|
|
|
|
|
|
|
181 |
|
182 |
with gr.Row():
|
183 |
with gr.Column(scale=1):
|
184 |
-
gr.Markdown("##
|
185 |
-
|
186 |
-
["Python
|
187 |
-
label="
|
188 |
-
value="Python
|
189 |
)
|
190 |
-
|
191 |
-
lines=
|
192 |
-
label="
|
193 |
-
placeholder="e.g., '
|
194 |
)
|
195 |
-
|
196 |
lines=3,
|
197 |
-
label="
|
198 |
-
placeholder="e.g., '
|
199 |
)
|
200 |
-
input_divergence_factor = gr.Slider(1, 5, value=3, step=1, label="Initial Solution Divergence (Number of Candidates)")
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
with gr.Column(scale=2):
|
205 |
-
gr.Markdown("##
|
206 |
with gr.Tabs():
|
207 |
-
with gr.TabItem("
|
208 |
-
|
209 |
-
with gr.TabItem("
|
210 |
-
|
211 |
-
with gr.TabItem("
|
212 |
-
|
213 |
-
with gr.TabItem("
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
)
|
223 |
|
224 |
gr.Markdown("---")
|
225 |
-
gr.Markdown(
|
|
|
|
|
|
|
226 |
|
227 |
-
# To launch this
|
228 |
-
# For Hugging Face Spaces, this file is 'app.py'. Include 'requirements.txt'.
|
229 |
if __name__ == "__main__":
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
import random # For a bit of mock variety if needed
|
5 |
|
6 |
+
# --- ALGOFORGE PRIME™ CONFIGURATION & SECRETS ---
|
7 |
+
# THE SACRED HF_TOKEN - ENSURE THIS IS IN YOUR SPACE SECRETS
|
8 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
9 |
|
10 |
+
if not HF_TOKEN:
|
11 |
+
print("WARNING: HF_TOKEN not found. LLM calls will fail. Please add HF_TOKEN to your Space Secrets!")
|
12 |
+
# You might want to raise an error or display a persistent warning in the UI
|
13 |
|
14 |
+
# Initialize the Inference Client - The Conduit to a Universe of Models!
|
15 |
+
client = InferenceClient(token=HF_TOKEN)
|
|
|
|
|
|
|
16 |
|
17 |
+
# Curated List of Models for Different Tasks (User Selectable!)
|
18 |
+
# You can expand this list. Ensure they are text-generation or instruct models.
|
19 |
+
AVAILABLE_MODELS = {
|
20 |
+
"General & Logic (Balanced)": "mistralai/Mistral-7B-Instruct-v0.2",
|
21 |
+
"Code Generation (Strong)": "codellama/CodeLlama-34b-Instruct-hf", # Might be slow, consider smaller CodeLlama
|
22 |
+
"Creative & Versatile (Fast)": "google/gemma-7b-it",
|
23 |
+
"Compact & Quick (Good for CPU tests)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
24 |
+
}
|
25 |
+
DEFAULT_MODEL = "mistralai/Mistral-7B-Instruct-v0.2"
|
26 |
+
|
27 |
+
# --- CORE AI ENGINEERING: LLM INTERACTION FUNCTIONS ---
|
28 |
+
|
29 |
+
def call_llm_via_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
+
Centralized function to call the Hugging Face Inference API.
|
32 |
+
As an SRE, I like centralized, observable points of failure/success!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"""
|
34 |
+
if not HF_TOKEN:
|
35 |
+
return "ERROR: HF_TOKEN is not configured. Cannot contact the LLM Oracle."
|
36 |
+
|
37 |
+
full_prompt = prompt_text
|
38 |
+
if system_prompt: # Some models use system prompts differently, this is a basic way
|
39 |
+
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt_text} [/INST]"
|
40 |
+
|
41 |
+
|
42 |
+
try:
|
43 |
+
response_stream = client.text_generation(
|
44 |
+
full_prompt,
|
45 |
+
model=model_id,
|
46 |
+
max_new_tokens=max_new_tokens,
|
47 |
+
temperature=temperature if temperature > 0 else None, # API expects None for temp 0
|
48 |
+
stream=False # Keep it simple for this demo; stream=True for real-time
|
49 |
+
)
|
50 |
+
# The response structure might vary slightly based on the model/client version.
|
51 |
+
# Typically, it's just the generated string.
|
52 |
+
# If it returns a dict: response_stream.get("generated_text", response_stream)
|
53 |
+
return response_stream
|
54 |
+
except Exception as e:
|
55 |
+
print(f"LLM API Call Error ({model_id}): {e}")
|
56 |
+
return f"LLM API Error: Could not connect or process request with {model_id}. Details: {str(e)}"
|
57 |
|
58 |
+
# --- ALGOFORGE PRIME™ - THE GRAND ORCHESTRATOR ---
|
59 |
+
|
60 |
+
def run_algoforge_simulation(
|
61 |
+
problem_type, problem_description, initial_hints,
|
62 |
+
num_initial_solutions, selected_model_key,
|
63 |
+
gen_temp, gen_max_tokens,
|
64 |
+
eval_temp, eval_max_tokens,
|
65 |
+
evolve_temp, evolve_max_tokens
|
66 |
+
):
|
67 |
+
if not problem_description:
|
68 |
+
return "ERROR: Problem Description is the lifeblood of innovation! Please provide it.", "", "", "", ""
|
69 |
+
|
70 |
+
if not HF_TOKEN:
|
71 |
+
# This message will appear in the output fields if the token is missing
|
72 |
+
no_token_msg = "CRITICAL ERROR: HF_TOKEN is missing. AlgoForge Prime™ cannot access its cognitive core. Please configure HF_TOKEN in Space Secrets."
|
73 |
+
return no_token_msg, no_token_msg, no_token_msg, no_token_msg
|
74 |
+
|
75 |
+
model_id = AVAILABLE_MODELS.get(selected_model_key, DEFAULT_MODEL)
|
76 |
+
log_entries = [f"**AlgoForge Prime™ Initializing...**\nSelected Model Core: {model_id} ({selected_model_key})\nProblem Type: {problem_type}"]
|
77 |
+
|
78 |
+
# --- STAGE 1: GENESIS ENGINE - MULTIVERSE SOLUTION GENERATION ---
|
79 |
+
log_entries.append("\n**Stage 1: Genesis Engine - Generating Initial Solution Candidates...**")
|
80 |
+
generated_solutions_raw = []
|
81 |
+
system_prompt_generate = f"You are an expert {problem_type.lower().replace(' ', '_')} algorithm designer. Your goal is to brainstorm multiple diverse solutions."
|
82 |
+
for i in range(num_initial_solutions):
|
83 |
+
prompt_generate = (
|
84 |
+
f"Problem Description: \"{problem_description}\"\n"
|
85 |
+
f"Consider these initial thoughts/constraints: \"{initial_hints if initial_hints else 'None'}\"\n"
|
86 |
+
f"Please provide one distinct and complete solution/algorithm for this problem. "
|
87 |
+
f"This is solution attempt #{i+1} of {num_initial_solutions}. Try a different approach if possible."
|
88 |
+
)
|
89 |
+
log_entries.append(f" Sending to Genesis Engine (Attempt {i+1}):\n Model: {model_id}\n Prompt (snippet): {prompt_generate[:150]}...")
|
90 |
+
solution_text = call_llm_via_api(prompt_generate, model_id, gen_temp, gen_max_tokens, system_prompt_generate)
|
91 |
+
generated_solutions_raw.append(solution_text)
|
92 |
+
log_entries.append(f" Genesis Engine Response (Attempt {i+1} - Snippet): {solution_text[:150]}...")
|
93 |
+
|
94 |
+
if not any(sol and not sol.startswith("LLM API Error") and not sol.startswith("ERROR:") for sol in generated_solutions_raw):
|
95 |
+
log_entries.append(" Genesis Engine failed to produce viable candidates.")
|
96 |
+
return "No valid solutions generated by the Genesis Engine.", "", "", "\n".join(log_entries)
|
97 |
|
98 |
+
# --- STAGE 2: CRITIQUE CRUCIBLE - RUTHLESS EVALUATION ---
|
99 |
+
log_entries.append("\n**Stage 2: Critique Crucible - Evaluating Candidates...**")
|
100 |
+
evaluated_solutions_display = []
|
101 |
+
evaluated_sols_data = []
|
102 |
+
system_prompt_evaluate = "You are a highly critical and insightful AI algorithm evaluator. Your task is to assess a given solution based on clarity, potential correctness, and perceived efficiency. Provide a concise critique and a numerical score from 1 (poor) to 10 (excellent)."
|
103 |
+
|
104 |
+
for i, sol_text in enumerate(generated_solutions_raw):
|
105 |
+
if sol_text.startswith("LLM API Error") or sol_text.startswith("ERROR:"):
|
106 |
+
critique = f"Solution {i+1} could not be generated due to an API error."
|
107 |
+
score = 0
|
108 |
+
else:
|
109 |
+
prompt_evaluate = (
|
110 |
+
f"Problem Reference: \"{problem_description[:200]}...\"\n"
|
111 |
+
f"Evaluate the following proposed solution:\n```\n{sol_text}\n```\n"
|
112 |
+
f"Provide your critique and a score (e.g., 'Critique: This is okay. Score: 7/10')."
|
113 |
+
)
|
114 |
+
log_entries.append(f" Sending to Critique Crucible (Solution {i+1}):\n Model: {model_id}\n Prompt (snippet): {prompt_evaluate[:150]}...")
|
115 |
+
evaluation_text = call_llm_via_api(prompt_evaluate, model_id, eval_temp, eval_max_tokens, system_prompt_evaluate)
|
116 |
+
log_entries.append(f" Critique Crucible Response (Solution {i+1} - Snippet): {evaluation_text[:150]}...")
|
117 |
+
|
118 |
+
# Attempt to parse score (this is a simple parser, can be improved)
|
119 |
+
parsed_score = 0
|
120 |
+
try:
|
121 |
+
# Look for "Score: X/10" or "Score: X"
|
122 |
+
score_match = [s for s in evaluation_text.split() if s.endswith("/10")]
|
123 |
+
if score_match:
|
124 |
+
parsed_score = int(score_match[0].split('/')[0].split(':')[-1].strip())
|
125 |
+
else: # Try just a number if X/10 not found
|
126 |
+
nums = [int(s) for s in evaluation_text.replace(":"," ").split() if s.isdigit()]
|
127 |
+
if nums: parsed_score = max(min(nums[-1],10),0) # Take last number, cap at 10
|
128 |
+
except ValueError:
|
129 |
+
parsed_score = random.randint(3,7) # Fallback if parsing fails
|
130 |
+
|
131 |
+
critique = evaluation_text
|
132 |
+
score = parsed_score
|
133 |
+
|
134 |
+
evaluated_solutions_display.append(f"**Candidate {i+1}:**\n```text\n{sol_text}\n```\n**Crucible Verdict (Score: {score}/10):**\n{critique}\n---")
|
135 |
+
evaluated_sols_data.append({"id": i+1, "solution": sol_text, "score": score, "critique": critique})
|
136 |
+
|
137 |
+
if not evaluated_sols_data:
|
138 |
+
log_entries.append(" Critique Crucible yielded no evaluations.")
|
139 |
+
return "\n\n".join(evaluated_solutions_display) if evaluated_solutions_display else "Generation OK, but evaluation failed.", "", "", "\n".join(log_entries)
|
140 |
+
|
141 |
+
# --- STAGE 3: SELECTION & ASCENSION PREP ---
|
142 |
+
evaluated_sols_data.sort(key=lambda x: x["score"], reverse=True)
|
143 |
+
best_initial_solution_data = evaluated_sols_data[0]
|
144 |
+
log_entries.append(f"\n**Stage 3: Champion Selected - Candidate {best_initial_solution_data['id']} (Score: {best_initial_solution_data['score']}) chosen for evolution.**")
|
145 |
+
|
146 |
+
# --- STAGE 4: EVOLUTIONARY FORGE - PURSUIT OF PERFECTION ---
|
147 |
+
log_entries.append("\n**Stage 4: Evolutionary Forge - Refining the Champion...**")
|
148 |
+
system_prompt_evolve = f"You are an elite AI algorithm optimizer. Your task is to take a good solution and make it significantly better, focusing on {problem_type.lower()} best practices, efficiency, or clarity."
|
149 |
+
prompt_evolve = (
|
150 |
+
f"Original Problem: \"{problem_description}\"\n"
|
151 |
+
f"The current leading solution (Score: {best_initial_solution_data['score']}/10) is:\n```\n{best_initial_solution_data['solution']}\n```\n"
|
152 |
+
f"Original Critique: \"{best_initial_solution_data['critique']}\"\n"
|
153 |
+
f"Your mission: Evolve this solution. Make it demonstrably superior. Explain the key improvements you've made."
|
154 |
+
)
|
155 |
+
log_entries.append(f" Sending to Evolutionary Forge:\n Model: {model_id}\n Prompt (snippet): {prompt_evolve[:150]}...")
|
156 |
+
evolved_solution_text = call_llm_via_api(prompt_evolve, model_id, evolve_temp, evolve_max_tokens, system_prompt_evolve)
|
157 |
+
log_entries.append(f" Evolutionary Forge Response (Snippet): {evolved_solution_text[:150]}...")
|
158 |
+
|
159 |
+
# --- FINAL OUTPUT ASSEMBLY ---
|
160 |
+
initial_solutions_output_md = "\n\n".join(evaluated_solutions_display)
|
161 |
+
best_solution_output_md = (
|
162 |
+
f"**Champion Candidate {best_initial_solution_data['id']} (Original Score: {best_initial_solution_data['score']}/10):**\n"
|
163 |
+
f"```text\n{best_initial_solution_data['solution']}\n```\n"
|
164 |
+
f"**Original Crucible Verdict:**\n{best_initial_solution_data['critique']}"
|
165 |
+
)
|
166 |
+
evolved_solution_output_md = f"**✨ AlgoForge Prime™ Evolved Artifact ✨:**\n```text\n{evolved_solution_text}\n```"
|
167 |
|
168 |
+
log_entries.append("\n**AlgoForge Prime™ Cycle Complete.**")
|
169 |
+
final_log_output = "\n".join(log_entries)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
return initial_solutions_output_md, best_solution_output_md, evolved_solution_output_md, final_log_output
|
172 |
|
173 |
+
# --- GRADIO UI: THE COMMAND DECK OF ALGOFORGE PRIME™ ---
|
174 |
+
intro_markdown = """
|
175 |
+
# ✨ AlgoForge Prime™ ✨: Conceptual Algorithmic Evolution
|
176 |
+
Welcome, Architect of the Future! I am your humble servant, an AI-driven system inspired by the groundbreaking work of pioneers like Google DeepMind's AlphaEvolve.
|
177 |
+
My purpose? To demonstrate a *simplified, conceptual* workflow for AI-assisted algorithm discovery and refinement.
|
178 |
+
**This is NOT AlphaEvolve.** This is a creative exploration using powerful Hugging Face LLMs via your `HF_TOKEN`.
|
179 |
|
180 |
+
**The Process, Distilled:**
|
181 |
+
1. **Genesis Engine:** We command an LLM to generate multiple diverse solutions to your problem.
|
182 |
+
2. **Critique Crucible:** Another (or the same) LLM instance evaluates these candidates, scoring them.
|
183 |
+
3. **Evolutionary Forge:** The highest-scoring candidate is fed back to an LLM with the directive: *IMPROVE IT!*
|
|
|
|
|
184 |
|
185 |
+
**Your `HF_TOKEN` must be set in this Space's Secrets for AlgoForge Prime™ to function!**
|
186 |
"""
|
187 |
|
188 |
+
with gr.Blocks(theme=gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue"), title="AlgoForge Prime™") as demo:
|
189 |
+
gr.Markdown(intro_markdown)
|
190 |
+
|
191 |
+
if not HF_TOKEN:
|
192 |
+
gr.Markdown("<h2 style='color:red;'>⚠️ CRITICAL: `HF_TOKEN` is NOT detected in Space Secrets. AlgoForge Prime™ is non-operational. Please add your token.</h2>")
|
193 |
|
194 |
with gr.Row():
|
195 |
with gr.Column(scale=1):
|
196 |
+
gr.Markdown("## 💡 1. Define the Challenge")
|
197 |
+
problem_type_dd = gr.Dropdown(
|
198 |
+
["Python Algorithm", "Data Structure Logic", "Mathematical Optimization", "Conceptual System Design", "Pseudocode Refinement"],
|
199 |
+
label="Type of Problem/Algorithm",
|
200 |
+
value="Python Algorithm"
|
201 |
)
|
202 |
+
problem_desc_tb = gr.Textbox(
|
203 |
+
lines=5,
|
204 |
+
label="Problem Description / Desired Outcome",
|
205 |
+
placeholder="e.g., 'Develop a Python function to efficiently find all prime factors of a large integer.' OR 'Design a heuristic for optimizing delivery routes in a dense urban area.'"
|
206 |
)
|
207 |
+
initial_hints_tb = gr.Textbox(
|
208 |
lines=3,
|
209 |
+
label="Initial Thoughts / Constraints / Seed Ideas (Optional)",
|
210 |
+
placeholder="e.g., 'Consider dynamic programming.' OR 'Avoid brute-force if N > 1000.' OR 'Must be implementable in Verilog later.'"
|
211 |
)
|
|
|
212 |
|
213 |
+
gr.Markdown("## ⚙️ 2. Configure The Forge")
|
214 |
+
model_select_dd = gr.Dropdown(
|
215 |
+
choices=list(AVAILABLE_MODELS.keys()),
|
216 |
+
value=list(AVAILABLE_MODELS.keys())[0], # Default to first model in dict
|
217 |
+
label="Select LLM Core Model"
|
218 |
+
)
|
219 |
+
num_solutions_slider = gr.Slider(1, 5, value=3, step=1, label="Number of Initial Solutions (Genesis Engine)")
|
220 |
+
|
221 |
+
with gr.Accordion("Advanced LLM Parameters (Tune with Caution!)", open=False):
|
222 |
+
gr.Markdown("Higher temperature = more creative/random. Lower = more focused/deterministic.")
|
223 |
+
with gr.Row():
|
224 |
+
gen_temp_slider = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Genesis Temp")
|
225 |
+
gen_max_tokens_slider = gr.Slider(100, 1000, value=350, step=50, label="Genesis Max Tokens")
|
226 |
+
with gr.Row():
|
227 |
+
eval_temp_slider = gr.Slider(0.0, 1.5, value=0.5, step=0.1, label="Crucible Temp")
|
228 |
+
eval_max_tokens_slider = gr.Slider(100, 500, value=200, step=50, label="Crucible Max Tokens")
|
229 |
+
with gr.Row():
|
230 |
+
evolve_temp_slider = gr.Slider(0.0, 1.5, value=0.8, step=0.1, label="Evolution Temp")
|
231 |
+
evolve_max_tokens_slider = gr.Slider(100, 1000, value=400, step=50, label="Evolution Max Tokens")
|
232 |
+
|
233 |
+
submit_btn = gr.Button("🚀 ENGAGE ALGOFORGE PRIME™ 🚀", variant="primary", size="lg")
|
234 |
|
235 |
with gr.Column(scale=2):
|
236 |
+
gr.Markdown("## 🔥 3. The Forge's Output")
|
237 |
with gr.Tabs():
|
238 |
+
with gr.TabItem("📜 Genesis Candidates & Crucible Verdicts"):
|
239 |
+
output_initial_solutions_md = gr.Markdown(label="LLM-Generated Initial Solutions & Evaluations")
|
240 |
+
with gr.TabItem("🏆 Champion Candidate (Pre-Evolution)"):
|
241 |
+
output_best_solution_md = gr.Markdown(label="Evaluator's Top Pick")
|
242 |
+
with gr.TabItem("🌟 Evolved Artifact"):
|
243 |
+
output_evolved_solution_md = gr.Markdown(label="Refined Solution from the Evolutionary Forge")
|
244 |
+
with gr.TabItem("🛠️ LLM Interaction Log (SRE View)"):
|
245 |
+
output_interaction_log_md = gr.Markdown(label="Detailed Log of LLM Prompts & (Snippets of) Responses")
|
246 |
+
|
247 |
+
submit_btn.click(
|
248 |
+
fn=run_algoforge_simulation,
|
249 |
+
inputs=[
|
250 |
+
problem_type_dd, problem_desc_tb, initial_hints_tb,
|
251 |
+
num_solutions_slider, model_select_dd,
|
252 |
+
gen_temp_slider, gen_max_tokens_slider,
|
253 |
+
eval_temp_slider, eval_max_tokens_slider,
|
254 |
+
evolve_temp_slider, evolve_max_tokens_slider
|
255 |
+
],
|
256 |
+
outputs=[
|
257 |
+
output_initial_solutions_md, output_best_solution_md,
|
258 |
+
output_evolved_solution_md, output_interaction_log_md
|
259 |
+
]
|
260 |
)
|
261 |
|
262 |
gr.Markdown("---")
|
263 |
+
gr.Markdown(
|
264 |
+
"**Disclaimer:** As the architect of this marvel, I must remind you: this is a *conceptual demonstration*. Real AI-driven algorithm discovery is vastly more complex and resource-intensive. LLM outputs are probabilistic and require rigorous human oversight and verification. This tool is for inspiration and exploration, not production deployment of unverified algorithms. Handle with brilliance and caution!"
|
265 |
+
"\n\n*Powered by Gradio, Hugging Face Inference API, and the boundless spirit of innovation.*"
|
266 |
+
)
|
267 |
|
268 |
+
# To launch this magnificent creation:
|
|
|
269 |
if __name__ == "__main__":
|
270 |
+
if not HF_TOKEN:
|
271 |
+
print("="*80)
|
272 |
+
print("WARNING: HF_TOKEN environment variable not set.")
|
273 |
+
print("AlgoForge Prime™ requires this token to communicate with Hugging Face LLMs.")
|
274 |
+
print("Please set it in your environment or Space Secrets.")
|
275 |
+
print("The UI will load, but LLM functionality will be disabled.")
|
276 |
+
print("="*80)
|
277 |
+
demo.launch(debug=True) # Debug=True is useful for local development
|