Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,21 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient # Still needed for HF fallbacks
|
3 |
-
import google.generativeai as genai # For Google Gemini API
|
4 |
import os
|
5 |
-
import random
|
6 |
-
|
7 |
-
# --- ALGOFORGE PRIME™ CONFIGURATION & SECRETS ---
|
8 |
-
|
9 |
-
# Google API Key - ESSENTIAL for Google Gemini Pro/Flash models via their API
|
10 |
-
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
11 |
-
GEMINI_API_CONFIGURED = False
|
12 |
-
if GOOGLE_API_KEY:
|
13 |
-
try:
|
14 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
15 |
-
GEMINI_API_CONFIGURED = True
|
16 |
-
print("INFO: Google Gemini API configured successfully.")
|
17 |
-
except Exception as e:
|
18 |
-
print(f"ERROR: Failed to configure Google Gemini API with provided key: {e}. Gemini models will be unavailable.")
|
19 |
-
# GOOGLE_API_KEY = None # Effectively disables it if config fails
|
20 |
-
else:
|
21 |
-
print("WARNING: GOOGLE_API_KEY not found in Space Secrets. Google Gemini API models will be disabled.")
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
HF_API_CONFIGURED
|
26 |
-
|
27 |
-
print("WARNING: HF_TOKEN not found in Space Secrets. Calls to Hugging Face hosted models will be disabled.")
|
28 |
-
else:
|
29 |
-
HF_API_CONFIGURED = True
|
30 |
-
print("INFO: HF_TOKEN detected. Hugging Face hosted models can be used.")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
except Exception as e:
|
39 |
-
print(f"ERROR: Failed to initialize Hugging Face InferenceClient: {e}. HF models will be unavailable.")
|
40 |
-
HF_API_CONFIGURED = False # Mark as not configured if client init fails
|
41 |
-
|
42 |
-
# --- MODEL DEFINITIONS ---
|
43 |
AVAILABLE_MODELS = {}
|
44 |
DEFAULT_MODEL_KEY = None
|
45 |
|
46 |
-
# Populate with Gemini models if API is configured
|
47 |
if GEMINI_API_CONFIGURED:
|
48 |
AVAILABLE_MODELS.update({
|
49 |
"Google Gemini 1.5 Flash (API - Fast, Recommended)": {"id": "gemini-1.5-flash-latest", "type": "google_gemini"},
|
@@ -51,364 +23,282 @@ if GEMINI_API_CONFIGURED:
|
|
51 |
})
|
52 |
DEFAULT_MODEL_KEY = "Google Gemini 1.5 Flash (API - Fast, Recommended)"
|
53 |
|
54 |
-
# Populate with Hugging Face models if API is configured (as alternatives/fallbacks)
|
55 |
if HF_API_CONFIGURED:
|
56 |
AVAILABLE_MODELS.update({
|
57 |
"Google Gemma 2B (HF - Quick Test)": {"id": "google/gemma-2b-it", "type": "hf"},
|
58 |
"Mistral 7B Instruct (HF)": {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf"},
|
59 |
-
"CodeLlama 7B Instruct (HF)": {"id": "codellama/CodeLlama-7b-Instruct-hf", "type": "hf"},
|
60 |
})
|
61 |
-
if not DEFAULT_MODEL_KEY:
|
62 |
DEFAULT_MODEL_KEY = "Google Gemma 2B (HF - Quick Test)"
|
63 |
|
64 |
-
# Absolute fallback if no models could be configured
|
65 |
if not AVAILABLE_MODELS:
|
66 |
-
print("CRITICAL ERROR: No models could be configured. Neither Google API Key nor HF Token seem to be working or present.")
|
67 |
-
# Add a dummy entry to prevent crashes, though the app will be non-functional
|
68 |
AVAILABLE_MODELS["No Models Available"] = {"id": "dummy", "type": "none"}
|
69 |
DEFAULT_MODEL_KEY = "No Models Available"
|
70 |
-
elif not DEFAULT_MODEL_KEY:
|
71 |
DEFAULT_MODEL_KEY = list(AVAILABLE_MODELS.keys())[0]
|
72 |
|
73 |
|
74 |
-
# ---
|
75 |
-
|
76 |
-
def call_huggingface_llm_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt=None):
|
77 |
-
if not HF_API_CONFIGURED or not hf_inference_client:
|
78 |
-
return "ERROR: Hugging Face API is not configured (HF_TOKEN missing or client init failed)."
|
79 |
-
|
80 |
-
if system_prompt:
|
81 |
-
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt_text} [/INST]"
|
82 |
-
else:
|
83 |
-
full_prompt = prompt_text
|
84 |
-
try:
|
85 |
-
use_sample = temperature > 0.0
|
86 |
-
response_text = hf_inference_client.text_generation(
|
87 |
-
full_prompt, model=model_id, max_new_tokens=max_new_tokens,
|
88 |
-
temperature=temperature if use_sample else None,
|
89 |
-
do_sample=use_sample, stream=False
|
90 |
-
)
|
91 |
-
return response_text
|
92 |
-
except Exception as e:
|
93 |
-
error_details = f"Error Type: {type(e).__name__}, Message: {str(e)}"
|
94 |
-
print(f"Hugging Face LLM API Call Error ({model_id}): {error_details}")
|
95 |
-
return f"LLM API Error (Hugging Face Model: {model_id}). Details: {error_details}. Check Space logs."
|
96 |
-
|
97 |
-
def call_google_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=400, system_prompt=None):
|
98 |
-
if not GEMINI_API_CONFIGURED:
|
99 |
-
return "ERROR: Google Gemini API is not configured (GOOGLE_API_KEY missing or config failed)."
|
100 |
-
|
101 |
-
try:
|
102 |
-
# For gemini-1.5-flash and newer, system_instruction is the preferred way.
|
103 |
-
# For older gemini-1.0-pro, you might need to structure the 'contents' array.
|
104 |
-
model_instance = genai.GenerativeModel(model_name=model_id, system_instruction=system_prompt if system_prompt else None)
|
105 |
-
|
106 |
-
generation_config = genai.types.GenerationConfig(
|
107 |
-
temperature=temperature,
|
108 |
-
max_output_tokens=max_new_tokens
|
109 |
-
)
|
110 |
-
# Simple user prompt if system_instruction is handled by GenerativeModel
|
111 |
-
response = model_instance.generate_content(
|
112 |
-
prompt_text, # Just the user prompt
|
113 |
-
generation_config=generation_config,
|
114 |
-
stream=False
|
115 |
-
)
|
116 |
-
|
117 |
-
# Robust check for response content and safety blocks
|
118 |
-
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
119 |
-
block_reason_msg = response.prompt_feedback.block_reason_message or response.prompt_feedback.block_reason
|
120 |
-
print(f"Google Gemini API: Prompt blocked. Reason: {block_reason_msg}")
|
121 |
-
return f"Google Gemini API Error: Your prompt was blocked. Reason: {block_reason_msg}. Try rephrasing."
|
122 |
-
|
123 |
-
if not response.candidates or not response.candidates[0].content.parts:
|
124 |
-
# Check if any candidate has content
|
125 |
-
candidate_had_content = any(cand.content and cand.content.parts for cand in response.candidates)
|
126 |
-
if not candidate_had_content:
|
127 |
-
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
|
128 |
-
# Specific check for safety if that's the finish reason
|
129 |
-
if str(finish_reason).upper() == "SAFETY":
|
130 |
-
print(f"Google Gemini API: Response generation stopped due to safety settings. Finish Reason: {finish_reason}")
|
131 |
-
return f"Google Gemini API Error: Response generation stopped due to safety settings. Finish Reason: {finish_reason}. Try a different prompt or adjust safety settings in your Google AI Studio if possible."
|
132 |
-
else:
|
133 |
-
print(f"Google Gemini API: Empty response or no content parts. Finish Reason: {finish_reason}")
|
134 |
-
return f"Google Gemini API Error: Empty response or no content generated. Finish Reason: {finish_reason}. The model might not have had anything to say or the request was malformed."
|
135 |
-
|
136 |
-
# Assuming the first candidate has the primary response
|
137 |
-
return response.candidates[0].content.parts[0].text
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
error_details = f"Error Type: {type(e).__name__}, Message: {str(e)}"
|
141 |
-
print(f"Google Gemini API Call Error ({model_id}): {error_details}")
|
142 |
-
# Provide more specific feedback for common errors if possible
|
143 |
-
if "API key not valid" in str(e) or "PERMISSION_DENIED" in str(e):
|
144 |
-
return f"LLM API Error (Google Gemini Model: {model_id}). Details: API key invalid or permission denied. Please check your GOOGLE_API_KEY and ensure the Gemini API is enabled for your project. Original error: {error_details}"
|
145 |
-
elif "Could not find model" in str(e):
|
146 |
-
return f"LLM API Error (Google Gemini Model: {model_id}). Details: Model ID '{model_id}' not found or not accessible with your key. Original error: {error_details}"
|
147 |
-
return f"LLM API Error (Google Gemini Model: {model_id}). Details: {error_details}. Check Space logs."
|
148 |
-
|
149 |
-
|
150 |
-
# --- ALGOFORGE PRIME™ - THE GRAND ORCHESTRATOR ---
|
151 |
-
# (This function remains largely the same as the previous "full rewrite",
|
152 |
-
# as the dispatch_llm_call logic handles routing to the correct API call function.
|
153 |
-
# I will include it for completeness but highlight any minor adjustments if needed.)
|
154 |
-
|
155 |
def run_algoforge_simulation(
|
156 |
-
problem_type, problem_description, initial_hints,
|
157 |
num_initial_solutions, selected_model_key,
|
158 |
gen_temp, gen_max_tokens,
|
159 |
eval_temp, eval_max_tokens,
|
160 |
-
evolve_temp, evolve_max_tokens
|
|
|
161 |
):
|
|
|
|
|
|
|
162 |
if not problem_description:
|
163 |
-
return "ERROR: Problem Description is
|
164 |
|
165 |
-
|
166 |
-
if not
|
167 |
-
return f"ERROR: No valid model selected
|
168 |
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
# STAGE 1: GENESIS
|
191 |
-
log_entries.append("\n**Stage 1: Genesis Engine - Generating Initial Solution Candidates...**")
|
192 |
-
generated_solutions_raw = []
|
193 |
-
system_prompt_generate = f"You are an expert {problem_type.lower().replace(' ', '_')} algorithm designer. Your goal is to brainstorm multiple diverse solutions to the user's problem."
|
194 |
-
for i in range(num_initial_solutions):
|
195 |
-
user_prompt_generate = (
|
196 |
-
f"Problem Description: \"{problem_description}\"\n"
|
197 |
-
f"Consider these initial thoughts/constraints: \"{initial_hints if initial_hints else 'None'}\"\n"
|
198 |
-
f"Please provide one distinct and complete solution/algorithm for this problem. "
|
199 |
-
f"This is solution attempt #{i+1} of {num_initial_solutions}. Try a different approach if possible."
|
200 |
-
)
|
201 |
-
solution_text = dispatch_llm_call(user_prompt_generate, system_prompt_generate, gen_temp, gen_max_tokens, f"Genesis Attempt {i+1}")
|
202 |
-
generated_solutions_raw.append(solution_text)
|
203 |
-
|
204 |
-
if not any(sol and not str(sol).startswith("ERROR:") and not str(sol).startswith("LLM API Error") for sol in generated_solutions_raw):
|
205 |
-
log_entries.append(" Genesis Engine failed to produce viable candidates or all calls resulted in errors.")
|
206 |
-
initial_sol_output = "No valid solutions generated by the Genesis Engine. All attempts failed or returned errors."
|
207 |
-
if generated_solutions_raw:
|
208 |
-
initial_sol_output += "\n\nErrors Encountered:\n" + "\n".join([f"- {str(s)}" for s in generated_solutions_raw if str(s).startswith("ERROR") or str(s).startswith("LLM API Error")])
|
209 |
-
return initial_sol_output, "", "", "\n".join(log_entries)
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
score = 0
|
221 |
-
|
222 |
-
if sol_text.startswith("ERROR:") or sol_text.startswith("LLM API Error"):
|
223 |
-
critique_text = f"Candidate {i+1} could not be properly generated due to an earlier API error: {sol_text}"
|
224 |
-
score = 0
|
225 |
else:
|
226 |
-
|
227 |
-
|
228 |
-
f"Now, evaluate the following proposed solution:\n```\n{sol_text}\n```\n"
|
229 |
-
f"Provide your critique and ensure you output a score in the format 'Score: X/10'."
|
230 |
)
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
critique_text = f"Error during evaluation of Candidate {i+1}: {evaluation_text}"
|
236 |
-
score = 0
|
237 |
-
else:
|
238 |
-
# Try to parse score
|
239 |
-
score_match_found = False
|
240 |
-
if "Score:" in evaluation_text:
|
241 |
-
try:
|
242 |
-
# More robust parsing for "Score: X/10" or "Score: X"
|
243 |
-
score_part_full = evaluation_text.split("Score:")[1].strip()
|
244 |
-
score_num_str = score_part_full.split("/")[0].split()[0].strip() # Get number before / or space
|
245 |
-
parsed_score_val = int(score_num_str)
|
246 |
-
score = max(1, min(parsed_score_val, 10)) # Clamp score
|
247 |
-
score_match_found = True
|
248 |
-
except (ValueError, IndexError, TypeError):
|
249 |
-
log_entries.append(f" Warning: Could not parse score accurately from: '{evaluation_text}' despite 'Score:' marker.")
|
250 |
-
|
251 |
-
if not score_match_found: # Fallback if parsing fails or marker missing
|
252 |
-
log_entries.append(f" Warning: 'Score:' marker missing or unparsable in evaluation: '{evaluation_text}'. Assigning random score.")
|
253 |
-
score = random.randint(3, 7)
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
log_entries.append(" ERROR: Selected champion solution itself is an error message. Cannot evolve.")
|
269 |
-
return "\n\n".join(evaluated_solutions_display), f"Selected champion was an error: {best_initial_solution_data['solution']}", "Cannot evolve an error.", "\n".join(log_entries)
|
270 |
-
|
271 |
-
# STAGE 4: EVOLUTION
|
272 |
-
log_entries.append("\n**Stage 4: Evolutionary Forge - Refining the Champion...**")
|
273 |
-
system_prompt_evolve = f"You are an elite AI algorithm optimizer and refiner. Your task is to take the provided solution and make it significantly better. Focus on {problem_type.lower()} best practices, improve efficiency or clarity, fix any potential errors, and expand on it if appropriate. Explain the key improvements you've made clearly."
|
274 |
-
user_prompt_evolve = (
|
275 |
-
f"Original Problem (for context): \"{problem_description}\"\n\n"
|
276 |
-
f"The current leading solution (which had a score of {best_initial_solution_data['score']}/10) is:\n```\n{best_initial_solution_data['solution']}\n```\n"
|
277 |
-
f"The original critique for this solution was: \"{best_initial_solution_data['critique']}\"\n\n"
|
278 |
-
f"Your mission: Evolve this solution. Make it demonstrably superior. If the original solution was just a sketch, flesh it out. If it had flaws, fix them. If it was good, make it great. Explain the key improvements you've made as part of your response."
|
279 |
-
)
|
280 |
-
evolved_solution_text = str(dispatch_llm_call(user_prompt_evolve, system_prompt_evolve, evolve_temp, evolve_max_tokens, "Evolution"))
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
294 |
)
|
|
|
|
|
|
|
|
|
|
|
295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
log_entries.append("\n**AlgoForge Prime™ Cycle Complete.**")
|
297 |
-
|
|
|
298 |
|
299 |
-
return initial_solutions_output_md, best_solution_output_md, evolved_solution_output_md, final_log_output
|
300 |
|
301 |
-
# --- GRADIO UI ---
|
302 |
intro_markdown = """
|
303 |
-
# ✨ AlgoForge Prime™ ✨:
|
304 |
-
|
305 |
-
|
306 |
-
**This is a conceptual demo, not AlphaEvolve itself.**
|
307 |
|
308 |
**API Keys Required in Space Secrets:**
|
309 |
-
- `GOOGLE_API_KEY` (Primary): For Google Gemini API models
|
310 |
-
- `HF_TOKEN` (Secondary): For Hugging Face hosted models
|
311 |
-
If a key is missing, corresponding models will be unusable or limited.
|
312 |
"""
|
313 |
-
|
314 |
token_status_md = ""
|
315 |
if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED:
|
316 |
-
token_status_md = "<p style='color:red;'>⚠️ CRITICAL: NEITHER
|
317 |
else:
|
318 |
-
if GEMINI_API_CONFIGURED:
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
if HF_API_CONFIGURED:
|
324 |
-
token_status_md += "<p style='color:green;'>✅ Hugging Face API Token detected and client initialized.</p>"
|
325 |
-
else:
|
326 |
-
token_status_md += "<p style='color:orange;'>⚠️ HF_TOKEN missing or client failed to initialize. Hugging Face models disabled.</p>"
|
327 |
|
328 |
|
329 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="
|
330 |
gr.Markdown(intro_markdown)
|
331 |
-
gr.HTML(token_status_md)
|
332 |
|
333 |
if not AVAILABLE_MODELS or DEFAULT_MODEL_KEY == "No Models Available":
|
334 |
-
gr.Markdown("<h2 style='color:red;'>No models are available.
|
335 |
else:
|
336 |
with gr.Row():
|
337 |
-
with gr.Column(scale=
|
338 |
gr.Markdown("## 💡 1. Define the Challenge")
|
339 |
problem_type_dd = gr.Dropdown(
|
340 |
-
["Python Algorithm
|
341 |
-
label="Type of Problem/Algorithm", value="Python Algorithm"
|
342 |
)
|
343 |
problem_desc_tb = gr.Textbox(
|
344 |
-
lines=
|
345 |
-
placeholder="e.g., '
|
346 |
)
|
347 |
initial_hints_tb = gr.Textbox(
|
348 |
-
lines=
|
349 |
-
placeholder="e.g., '
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
)
|
351 |
|
352 |
gr.Markdown("## ⚙️ 2. Configure The Forge")
|
353 |
model_select_dd = gr.Dropdown(
|
354 |
choices=list(AVAILABLE_MODELS.keys()),
|
355 |
-
value=DEFAULT_MODEL_KEY if DEFAULT_MODEL_KEY in AVAILABLE_MODELS else (list(AVAILABLE_MODELS.keys())[0] if AVAILABLE_MODELS else None),
|
356 |
label="Select LLM Core Model"
|
357 |
)
|
358 |
-
num_solutions_slider = gr.Slider(1,
|
359 |
|
360 |
with gr.Accordion("Advanced LLM Parameters", open=False):
|
|
|
361 |
with gr.Row():
|
362 |
-
gen_temp_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Genesis Temp")
|
363 |
-
gen_max_tokens_slider = gr.Slider(
|
364 |
with gr.Row():
|
365 |
eval_temp_slider = gr.Slider(0.0, 1.0, value=0.4, step=0.05, label="Crucible Temp")
|
366 |
-
eval_max_tokens_slider = gr.Slider(
|
367 |
with gr.Row():
|
368 |
evolve_temp_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Evolution Temp")
|
369 |
-
evolve_max_tokens_slider = gr.Slider(
|
|
|
370 |
|
371 |
submit_btn = gr.Button("🚀 ENGAGE ALGOFORGE PRIME™ 🚀", variant="primary", size="lg")
|
372 |
|
373 |
-
with gr.Column(scale=
|
374 |
gr.Markdown("## 🔥 3. The Forge's Output")
|
375 |
with gr.Tabs():
|
376 |
-
with gr.TabItem("📜 Genesis Candidates &
|
377 |
-
output_initial_solutions_md = gr.Markdown(label="
|
378 |
with gr.TabItem("🏆 Champion Candidate (Pre-Evolution)"):
|
379 |
-
output_best_solution_md = gr.Markdown(label="
|
380 |
-
with gr.TabItem("🌟 Evolved Artifact"):
|
381 |
-
output_evolved_solution_md = gr.Markdown(label="Refined Solution from
|
|
|
382 |
with gr.TabItem("🛠️ Interaction Log (Dev View)"):
|
383 |
output_interaction_log_md = gr.Markdown(label="Detailed Log of LLM Prompts & Responses")
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
submit_btn.click(
|
386 |
fn=run_algoforge_simulation,
|
387 |
inputs=[
|
388 |
-
problem_type_dd, problem_desc_tb, initial_hints_tb,
|
389 |
num_solutions_slider, model_select_dd,
|
390 |
gen_temp_slider, gen_max_tokens_slider,
|
391 |
eval_temp_slider, eval_max_tokens_slider,
|
392 |
evolve_temp_slider, evolve_max_tokens_slider
|
393 |
],
|
394 |
-
outputs=
|
395 |
-
output_initial_solutions_md, output_best_solution_md,
|
396 |
-
output_evolved_solution_md, output_interaction_log_md
|
397 |
-
]
|
398 |
)
|
399 |
gr.Markdown("---")
|
400 |
gr.Markdown(
|
401 |
-
"**Disclaimer:**
|
402 |
-
"
|
403 |
)
|
404 |
|
|
|
405 |
if __name__ == "__main__":
|
406 |
print("="*80)
|
407 |
-
print("AlgoForge Prime™ (
|
408 |
-
|
409 |
-
|
410 |
-
if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED: print("CRITICAL: NEITHER API IS CONFIGURED. APP WILL NOT FUNCTION.")
|
411 |
-
print(f"UI will attempt to default to model key: {DEFAULT_MODEL_KEY}")
|
412 |
print(f"Available models for UI: {list(AVAILABLE_MODELS.keys())}")
|
413 |
print("="*80)
|
414 |
demo.launch(debug=True, server_name="0.0.0.0")
|
|
|
1 |
+
# algoforge_prime/app.py
|
2 |
import gradio as gr
|
|
|
|
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Initialize core components first (important for loading API keys etc.)
|
6 |
+
# This needs to happen before other core modules try to use the status
|
7 |
+
from core.llm_clients import initialize_clients, GEMINI_API_CONFIGURED, HF_API_CONFIGURED
|
8 |
+
initialize_clients() # Explicitly initialize
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
from core.generation_engine import generate_initial_solutions
|
11 |
+
from core.evaluation_engine import evaluate_solution_candidate, EvaluationResult
|
12 |
+
from core.evolution_engine import evolve_solution
|
13 |
+
# from prompts.system_prompts import get_system_prompt # Might not be needed directly here if core modules handle it
|
14 |
+
|
15 |
+
# --- MODEL DEFINITIONS (can also be moved to a config file/module later) ---
|
|
|
|
|
|
|
|
|
|
|
16 |
AVAILABLE_MODELS = {}
|
17 |
DEFAULT_MODEL_KEY = None
|
18 |
|
|
|
19 |
if GEMINI_API_CONFIGURED:
|
20 |
AVAILABLE_MODELS.update({
|
21 |
"Google Gemini 1.5 Flash (API - Fast, Recommended)": {"id": "gemini-1.5-flash-latest", "type": "google_gemini"},
|
|
|
23 |
})
|
24 |
DEFAULT_MODEL_KEY = "Google Gemini 1.5 Flash (API - Fast, Recommended)"
|
25 |
|
|
|
26 |
if HF_API_CONFIGURED:
|
27 |
AVAILABLE_MODELS.update({
|
28 |
"Google Gemma 2B (HF - Quick Test)": {"id": "google/gemma-2b-it", "type": "hf"},
|
29 |
"Mistral 7B Instruct (HF)": {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf"},
|
|
|
30 |
})
|
31 |
+
if not DEFAULT_MODEL_KEY:
|
32 |
DEFAULT_MODEL_KEY = "Google Gemma 2B (HF - Quick Test)"
|
33 |
|
|
|
34 |
if not AVAILABLE_MODELS:
|
|
|
|
|
35 |
AVAILABLE_MODELS["No Models Available"] = {"id": "dummy", "type": "none"}
|
36 |
DEFAULT_MODEL_KEY = "No Models Available"
|
37 |
+
elif not DEFAULT_MODEL_KEY:
|
38 |
DEFAULT_MODEL_KEY = list(AVAILABLE_MODELS.keys())[0]
|
39 |
|
40 |
|
41 |
+
# --- Main Orchestration Logic ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def run_algoforge_simulation(
|
43 |
+
problem_type, problem_description, initial_hints, user_tests_string, # New input: user_tests_string
|
44 |
num_initial_solutions, selected_model_key,
|
45 |
gen_temp, gen_max_tokens,
|
46 |
eval_temp, eval_max_tokens,
|
47 |
+
evolve_temp, evolve_max_tokens,
|
48 |
+
progress=gr.Progress(track_tqdm=True) # Gradio progress bar
|
49 |
):
|
50 |
+
progress(0, desc="Initializing AlgoForge Prime™...")
|
51 |
+
log_entries = [f"**AlgoForge Prime™ Cycle Starting...**"]
|
52 |
+
|
53 |
if not problem_description:
|
54 |
+
return "ERROR: Problem Description is mandatory.", "", "", "", ""
|
55 |
|
56 |
+
model_config = AVAILABLE_MODELS.get(selected_model_key)
|
57 |
+
if not model_config or model_config["type"] == "none":
|
58 |
+
return f"ERROR: No valid model selected ('{selected_model_key}'). Check API key configs.", "", "", "", ""
|
59 |
|
60 |
+
log_entries.append(f"Selected Model: {selected_model_key} (Type: {model_config['type']}, ID: {model_config['id']})")
|
61 |
+
log_entries.append(f"Problem Type: {problem_type}, User Tests Provided: {'Yes' if user_tests_string else 'No'}")
|
62 |
+
|
63 |
+
# --- STAGE 1: GENESIS ---
|
64 |
+
progress(0.1, desc="Stage 1: Genesis Engine - Generating Solutions...")
|
65 |
+
log_entries.append("\n**Stage 1: Genesis Engine**")
|
66 |
|
67 |
+
llm_gen_config = {"type": model_config["type"], "model_id": model_config["id"], "temp": gen_temp, "max_tokens": gen_max_tokens}
|
68 |
+
initial_solution_texts = generate_initial_solutions(
|
69 |
+
problem_description, initial_hints, problem_type,
|
70 |
+
num_initial_solutions, llm_gen_config
|
71 |
+
)
|
72 |
+
log_entries.append(f"Generated {len(initial_solution_texts)} raw solution candidates.")
|
73 |
+
for i, sol_text in enumerate(initial_solution_texts):
|
74 |
+
log_entries.append(f" Candidate {i+1} (Snippet): {str(sol_text)[:100]}...")
|
75 |
+
|
76 |
+
|
77 |
+
valid_initial_solutions = [s for s in initial_solution_texts if s and not s.startswith("ERROR")]
|
78 |
+
if not valid_initial_solutions:
|
79 |
+
error_summary = "\n".join(set(s for s in initial_solution_texts if s and s.startswith("ERROR")))
|
80 |
+
return f"No valid solutions generated by Genesis Engine. Errors:\n{error_summary}", "", "", "\n".join(log_entries), ""
|
81 |
+
|
82 |
+
# --- STAGE 2: CRITIQUE & EVALUATION ---
|
83 |
+
progress(0.3, desc="Stage 2: Critique Crucible - Evaluating Candidates...")
|
84 |
+
log_entries.append("\n**Stage 2: Critique Crucible & Automated Evaluation**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
evaluated_candidates_data = []
|
87 |
+
llm_eval_config = {"type": model_config["type"], "model_id": model_config["id"], "temp": eval_temp, "max_tokens": eval_max_tokens}
|
88 |
+
|
89 |
+
for i, sol_text in enumerate(initial_solution_texts): # Evaluate all, even errors, to show the error
|
90 |
+
progress(0.3 + (i / num_initial_solutions) * 0.4, desc=f"Evaluating Candidate {i+1}...")
|
91 |
+
log_entries.append(f"\nEvaluating Candidate {i+1}:")
|
92 |
+
if sol_text.startswith("ERROR"):
|
93 |
+
eval_res = EvaluationResult(score=0, critique=f"Candidate was an error from Genesis: {sol_text}")
|
94 |
+
log_entries.append(f" Skipping detailed evaluation for error: {sol_text}")
|
|
|
|
|
|
|
|
|
|
|
95 |
else:
|
96 |
+
eval_res = evaluate_solution_candidate(
|
97 |
+
sol_text, problem_description, problem_type, user_tests_string, llm_eval_config
|
|
|
|
|
98 |
)
|
99 |
+
log_entries.append(f" LLM Critique & Test Score: {eval_res.score}/10")
|
100 |
+
log_entries.append(f" Test Results: {eval_res.passed_tests}/{eval_res.total_tests} passed.")
|
101 |
+
if eval_res.execution_error: log_entries.append(f" Execution Error: {eval_res.execution_error}")
|
102 |
+
log_entries.append(f" Full Critique (Snippet): {str(eval_res.critique)[:150]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
evaluated_candidates_data.append({
|
105 |
+
"id": i + 1,
|
106 |
+
"solution_text": sol_text,
|
107 |
+
"evaluation": eval_res
|
108 |
+
})
|
109 |
+
|
110 |
+
# Format display for initial solutions
|
111 |
+
initial_solutions_display_md = []
|
112 |
+
for data in evaluated_candidates_data:
|
113 |
+
initial_solutions_display_md.append(
|
114 |
+
f"**Candidate {data['id']}:**\n```python\n{data['solution_text']}\n```\n"
|
115 |
+
f"**Evaluation Verdict (Score: {data['evaluation'].score}/10):**\n{data['evaluation'].critique}\n---"
|
116 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# --- STAGE 3: SELECTION ---
|
119 |
+
progress(0.75, desc="Stage 3: Selecting Champion...")
|
120 |
+
# Filter out candidates that were errors from genesis before sorting by score
|
121 |
+
valid_evaluated_candidates = [cand for cand in evaluated_candidates_data if not cand['solution_text'].startswith("ERROR")]
|
122 |
+
if not valid_evaluated_candidates:
|
123 |
+
return "\n\n".join(initial_solutions_display_md), "No valid candidates to select from after evaluation.", "", "\n".join(log_entries), ""
|
124 |
+
|
125 |
+
valid_evaluated_candidates.sort(key=lambda x: x["evaluation"].score, reverse=True)
|
126 |
+
best_candidate_data = valid_evaluated_candidates[0]
|
127 |
+
log_entries.append(f"\n**Stage 3: Champion Selected**\nCandidate {best_candidate_data['id']} chosen with score {best_candidate_data['evaluation'].score}/10.")
|
128 |
+
|
129 |
+
best_solution_display_md = (
|
130 |
+
f"**Champion Candidate {best_candidate_data['id']} (Original Score: {best_candidate_data['evaluation'].score}/10):**\n"
|
131 |
+
f"```python\n{best_candidate_data['solution_text']}\n```\n"
|
132 |
+
f"**Original Comprehensive Evaluation:**\n{best_candidate_data['evaluation'].critique}"
|
133 |
)
|
134 |
+
|
135 |
+
# --- STAGE 4: EVOLUTION ---
|
136 |
+
progress(0.8, desc="Stage 4: Evolutionary Forge - Refining Champion...")
|
137 |
+
log_entries.append("\n**Stage 4: Evolutionary Forge**")
|
138 |
+
llm_evolve_config = {"type": model_config["type"], "model_id": model_config["id"], "temp": evolve_temp, "max_tokens": evolve_max_tokens}
|
139 |
|
140 |
+
evolved_solution_text = evolve_solution(
|
141 |
+
best_candidate_data["solution_text"],
|
142 |
+
str(best_candidate_data["evaluation"].critique), # Pass the full critique including test results
|
143 |
+
best_candidate_data["evaluation"].score,
|
144 |
+
problem_description,
|
145 |
+
problem_type,
|
146 |
+
llm_evolve_config
|
147 |
+
)
|
148 |
+
log_entries.append(f"Evolved solution text (Snippet): {str(evolved_solution_text)[:150]}...")
|
149 |
+
|
150 |
+
evolved_solution_display_md = ""
|
151 |
+
final_thoughts_md = "" # For LLM explanation of unit test results if needed
|
152 |
+
|
153 |
+
if evolved_solution_text.startswith("ERROR"):
|
154 |
+
evolved_solution_display_md = f"**Evolution Failed:**\n{evolved_solution_text}"
|
155 |
+
else:
|
156 |
+
evolved_solution_display_md = f"**✨ AlgoForge Prime™ Evolved Artifact ✨:**\n```python\n{evolved_solution_text}\n```"
|
157 |
+
# Optionally, re-evaluate the evolved solution with unit tests if provided
|
158 |
+
if "python" in problem_type.lower() and user_tests_string:
|
159 |
+
progress(0.9, desc="Re-evaluating Evolved Solution with Tests...")
|
160 |
+
log_entries.append("\n**Post-Evolution Sanity Check (Re-running Tests on Evolved Code)**")
|
161 |
+
# Using a neutral LLM config for this, or could be separate
|
162 |
+
# This evaluation is primarily for the test results, not another LLM critique of the evolved code
|
163 |
+
evolved_eval_res = evaluate_solution_candidate(
|
164 |
+
evolved_solution_text, problem_description, problem_type, user_tests_string,
|
165 |
+
{"type": model_config["type"], "model_id": model_config["id"], "temp": 0.1, "max_tokens": eval_max_tokens} # Low temp for focused test eval
|
166 |
+
)
|
167 |
+
evolved_solution_display_md += (
|
168 |
+
f"\n\n**Post-Evolution Test Results (Simulated):**\n"
|
169 |
+
f"Passed: {evolved_eval_res.passed_tests}/{evolved_eval_res.total_tests}\n"
|
170 |
+
)
|
171 |
+
if evolved_eval_res.execution_error:
|
172 |
+
evolved_solution_display_md += f"Execution Output/Error: {evolved_eval_res.execution_error}\n"
|
173 |
+
log_entries.append(f" Evolved Code Test Results: {evolved_eval_res.passed_tests}/{evolved_eval_res.total_tests} passed.")
|
174 |
+
|
175 |
+
# Get LLM to explain the test results of the evolved code
|
176 |
+
# progress(0.95, desc="Explaining Evolved Code Test Results...")
|
177 |
+
# explain_prompt = f"The following Python code was generated: \n```python\n{evolved_solution_text}\n```\nIt was tested against these assertions:\n```python\n{user_tests_string}\n```\nThe test outcome was: {evolved_eval_res.passed_tests}/{evolved_eval_res.total_tests} passed. \nExecution/Error details: {evolved_eval_res.execution_error}\n\nProvide a brief analysis of these test results for the given code."
|
178 |
+
# explain_sys_prompt = get_system_prompt("code_execution_explainer")
|
179 |
+
# explanation_response = dispatch_llm_call_simplified(explain_prompt, explain_sys_prompt, llm_evolve_config) # Need a simplified dispatcher or use the full one
|
180 |
+
# final_thoughts_md = f"**AI Analysis of Evolved Code's Test Results:**\n{explanation_response}"
|
181 |
+
|
182 |
+
|
183 |
log_entries.append("\n**AlgoForge Prime™ Cycle Complete.**")
|
184 |
+
progress(1.0, desc="Cycle Complete!")
|
185 |
+
return "\n\n".join(initial_solutions_display_md), best_solution_display_md, evolved_solution_display_md, "\n".join(log_entries), final_thoughts_md
|
186 |
|
|
|
187 |
|
188 |
+
# --- GRADIO UI (largely similar, but with a new input for user tests) ---
|
189 |
intro_markdown = """
|
190 |
+
# ✨ AlgoForge Prime™ ✨: Modular Algorithmic Evolution
|
191 |
+
This enhanced version demonstrates a more structured approach to AI-assisted algorithm discovery,
|
192 |
+
featuring basic (simulated) unit testing for Python code.
|
|
|
193 |
|
194 |
**API Keys Required in Space Secrets:**
|
195 |
+
- `GOOGLE_API_KEY` (Primary): For Google Gemini API models.
|
196 |
+
- `HF_TOKEN` (Secondary): For Hugging Face hosted models.
|
|
|
197 |
"""
|
|
|
198 |
token_status_md = ""
|
199 |
if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED:
|
200 |
+
token_status_md = "<p style='color:red;'>⚠️ CRITICAL: NEITHER API IS CONFIGURED. APP WILL NOT FUNCTION.</p>"
|
201 |
else:
|
202 |
+
if GEMINI_API_CONFIGURED: token_status_md += "<p style='color:green;'>✅ Google Gemini API Key detected.</p>"
|
203 |
+
else: token_status_md += "<p style='color:orange;'>⚠️ GOOGLE_API_KEY missing/failed. Gemini models disabled.</p>"
|
204 |
+
if HF_API_CONFIGURED: token_status_md += "<p style='color:green;'>✅ Hugging Face API Token detected.</p>"
|
205 |
+
else: token_status_md += "<p style='color:orange;'>⚠️ HF_TOKEN missing/failed. Hugging Face models disabled.</p>"
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
|
208 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan"), title="AlgoForge Prime™ Modular") as demo:
|
209 |
gr.Markdown(intro_markdown)
|
210 |
+
gr.HTML(token_status_md)
|
211 |
|
212 |
if not AVAILABLE_MODELS or DEFAULT_MODEL_KEY == "No Models Available":
|
213 |
+
gr.Markdown("<h2 style='color:red;'>No models are available. Check API keys and restart.</h2>")
|
214 |
else:
|
215 |
with gr.Row():
|
216 |
+
with gr.Column(scale=2): # Made input column wider
|
217 |
gr.Markdown("## 💡 1. Define the Challenge")
|
218 |
problem_type_dd = gr.Dropdown(
|
219 |
+
["Python Algorithm with Tests", "Python Algorithm (Critique Only)", "General Algorithm Idea", "Conceptual System Design"],
|
220 |
+
label="Type of Problem/Algorithm", value="Python Algorithm with Tests"
|
221 |
)
|
222 |
problem_desc_tb = gr.Textbox(
|
223 |
+
lines=4, label="Problem Description / Desired Outcome",
|
224 |
+
placeholder="e.g., 'Python function `is_palindrome(s: str) -> bool` that checks if a string is a palindrome, ignoring case and non-alphanumeric chars.'"
|
225 |
)
|
226 |
initial_hints_tb = gr.Textbox(
|
227 |
+
lines=2, label="Initial Thoughts / Constraints (Optional)",
|
228 |
+
placeholder="e.g., 'Iterative approach preferred.' or 'Handle empty strings.'"
|
229 |
+
)
|
230 |
+
# NEW INPUT for User Tests
|
231 |
+
user_tests_tb = gr.Textbox(
|
232 |
+
lines=5, label="Python Unit Tests (Optional, one `assert` per line)",
|
233 |
+
placeholder="assert is_palindrome('Racecar!') == True\nassert is_palindrome('hello') == False\nassert is_palindrome('') == True",
|
234 |
+
info="For 'Python Algorithm with Tests' type. Ignored otherwise."
|
235 |
)
|
236 |
|
237 |
gr.Markdown("## ⚙️ 2. Configure The Forge")
|
238 |
model_select_dd = gr.Dropdown(
|
239 |
choices=list(AVAILABLE_MODELS.keys()),
|
240 |
+
value=DEFAULT_MODEL_KEY if DEFAULT_MODEL_KEY in AVAILABLE_MODELS else (list(AVAILABLE_MODELS.keys())[0] if AVAILABLE_MODELS else None),
|
241 |
label="Select LLM Core Model"
|
242 |
)
|
243 |
+
num_solutions_slider = gr.Slider(1, 3, value=2, step=1, label="Number of Initial Solutions (Genesis Engine)") # Max 3 for faster runs
|
244 |
|
245 |
with gr.Accordion("Advanced LLM Parameters", open=False):
|
246 |
+
# ... (temp and max_tokens sliders - same as before) ...
|
247 |
with gr.Row():
|
248 |
+
gen_temp_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Genesis Temp")
|
249 |
+
gen_max_tokens_slider = gr.Slider(200, 2048, value=768, step=64, label="Genesis Max Tokens")
|
250 |
with gr.Row():
|
251 |
eval_temp_slider = gr.Slider(0.0, 1.0, value=0.4, step=0.05, label="Crucible Temp")
|
252 |
+
eval_max_tokens_slider = gr.Slider(150, 1024, value=512, step=64, label="Crucible Max Tokens")
|
253 |
with gr.Row():
|
254 |
evolve_temp_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Evolution Temp")
|
255 |
+
evolve_max_tokens_slider = gr.Slider(200, 2048, value=1024, step=64, label="Evolution Max Tokens")
|
256 |
+
|
257 |
|
258 |
submit_btn = gr.Button("🚀 ENGAGE ALGOFORGE PRIME™ 🚀", variant="primary", size="lg")
|
259 |
|
260 |
+
with gr.Column(scale=3): # Made output column wider
|
261 |
gr.Markdown("## 🔥 3. The Forge's Output")
|
262 |
with gr.Tabs():
|
263 |
+
with gr.TabItem("📜 Genesis Candidates & Evaluations"):
|
264 |
+
output_initial_solutions_md = gr.Markdown(label="Generated Solutions & Combined Evaluations")
|
265 |
with gr.TabItem("🏆 Champion Candidate (Pre-Evolution)"):
|
266 |
+
output_best_solution_md = gr.Markdown(label="Top Pick for Refinement")
|
267 |
+
with gr.TabItem("🌟 Evolved Artifact (& Test Analysis)"):
|
268 |
+
output_evolved_solution_md = gr.Markdown(label="Refined Solution from Evolutionary Forge")
|
269 |
+
# output_final_thoughts_md = gr.Markdown(label="AI Analysis of Evolved Code's Tests") # Optional separate output
|
270 |
with gr.TabItem("🛠️ Interaction Log (Dev View)"):
|
271 |
output_interaction_log_md = gr.Markdown(label="Detailed Log of LLM Prompts & Responses")
|
272 |
+
|
273 |
+
outputs_list = [
|
274 |
+
output_initial_solutions_md, output_best_solution_md,
|
275 |
+
output_evolved_solution_md, output_interaction_log_md,
|
276 |
+
gr.Markdown() # Placeholder for final_thoughts_md if you add it as a separate component
|
277 |
+
]
|
278 |
|
279 |
submit_btn.click(
|
280 |
fn=run_algoforge_simulation,
|
281 |
inputs=[
|
282 |
+
problem_type_dd, problem_desc_tb, initial_hints_tb, user_tests_tb, # Added user_tests_tb
|
283 |
num_solutions_slider, model_select_dd,
|
284 |
gen_temp_slider, gen_max_tokens_slider,
|
285 |
eval_temp_slider, eval_max_tokens_slider,
|
286 |
evolve_temp_slider, evolve_max_tokens_slider
|
287 |
],
|
288 |
+
outputs=outputs_list
|
|
|
|
|
|
|
289 |
)
|
290 |
gr.Markdown("---")
|
291 |
gr.Markdown(
|
292 |
+
"**Disclaimer:** Modular demo. (Simulated) unit testing is illustrative. **NEVER run LLM-generated code from an untrusted source in an unrestricted environment.** "
|
293 |
+
"Real sandboxing is complex and critical for safety."
|
294 |
)
|
295 |
|
296 |
+
# --- Entry Point ---
|
297 |
if __name__ == "__main__":
|
298 |
print("="*80)
|
299 |
+
print("AlgoForge Prime™ (Modular Version) Starting...")
|
300 |
+
# ... (startup print messages for API key status - same as before) ...
|
301 |
+
print(f"UI default model key: {DEFAULT_MODEL_KEY}")
|
|
|
|
|
302 |
print(f"Available models for UI: {list(AVAILABLE_MODELS.keys())}")
|
303 |
print("="*80)
|
304 |
demo.launch(debug=True, server_name="0.0.0.0")
|