# algoforge_prime/core/evolution_engine.py from .llm_clients import call_huggingface_api, call_gemini_api, LLMResponse from ..prompts.system_prompts import get_system_prompt def evolve_solution( original_solution_text, original_critique_text, # This now includes test results if any original_score, problem_description, problem_type, llm_client_config # Dict: {"type": ..., "model_id": ..., "temp": ..., "max_tokens": ...} ): system_p_evolve = get_system_prompt("evolution_general", problem_type) # Construct a more detailed user prompt for evolution user_p_evolve = ( f"Original Problem (for context): \"{problem_description}\"\n\n" f"The current leading solution (which had a score of {original_score}/10) is:\n```\n{original_solution_text}\n```\n" f"The comprehensive critique for this solution was:\n'''\n{original_critique_text}\n'''\n\n" f"Your mission: Evolve this solution. Make it demonstrably superior based on the critique and any test failures mentioned. " "If the original solution was just a sketch, flesh it out. If it had flaws (especially those highlighted by tests), fix them. " "If it was good, make it great. Explain the key improvements you've made as part of your response." ) llm_response_obj = None if llm_client_config["type"] == "hf": llm_response_obj = call_huggingface_api( user_p_evolve, llm_client_config["model_id"], temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"], system_prompt_text=system_p_evolve ) elif llm_client_config["type"] == "google_gemini": llm_response_obj = call_gemini_api( user_p_evolve, llm_client_config["model_id"], temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"], system_prompt_text=system_p_evolve ) if llm_response_obj and llm_response_obj.success: return llm_response_obj.text elif llm_response_obj: return f"ERROR (Evolution): {llm_response_obj.error}" else: return "ERROR (Evolution): Unknown error during LLM call."