# algoforge_prime/core/evolution_engine.py from core.llm_clients import call_huggingface_api, call_gemini_api, LLMResponse # Absolute from prompts.system_prompts import get_system_prompt # Absolute # from ..prompts.prompt_templates import format_evolution_user_prompt # If you create one def evolve_solution( original_solution_text: str, comprehensive_critique_text: str, # This includes LLM critique + test summary original_combined_score: int, problem_description: str, problem_type: str, llm_client_config: dict # {"type": ..., "model_id": ..., "temp": ..., "max_tokens": ...} ) -> str: # Returns evolved solution text or an error string """ Attempts to evolve a solution based on its critique and score. """ system_p_evolve = get_system_prompt("evolution_general") # problem_type can be used for specialization user_p_evolve = ( f"Original Problem Context: \"{problem_description}\"\n\n" f"The solution to be evolved achieved a score of {original_combined_score}/10.\n" f"Here is the solution text:\n```python\n{original_solution_text}\n```\n\n" f"Here is the comprehensive evaluation and critique it received (including any automated test feedback):\n'''\n{comprehensive_critique_text}\n'''\n\n" f"Your Task: Based on the above, evolve the provided solution to make it demonstrably superior. " f"Address any flaws, incompleteness, or inefficiencies mentioned in the critique or highlighted by test failures. " f"If the solution was good, make it even better (e.g., more robust, more efficient, clearer). " f"Clearly explain the key improvements you've made as an integral part of your evolved response (e.g., in comments or a concluding summary)." ) llm_response_obj = None # type: LLMResponse if llm_client_config["type"] == "hf": llm_response_obj = call_huggingface_api( user_p_evolve, llm_client_config["model_id"], temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"], system_prompt_text=system_p_evolve ) elif llm_client_config["type"] == "google_gemini": llm_response_obj = call_gemini_api( user_p_evolve, llm_client_config["model_id"], temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"], system_prompt_text=system_p_evolve ) else: return f"ERROR (Evolution): Unknown LLM client type '{llm_client_config['type']}'" if llm_response_obj.success: return llm_response_obj.text else: return f"ERROR (Evolution with {llm_response_obj.model_id_used}): {llm_response_obj.error}"