# algoforge_prime/app.py import gradio as gr import os import time import json # For potentially displaying structured data or passing complex states # --- Core Logic Imports --- from core.llm_clients import initialize_all_clients, is_gemini_api_configured, is_hf_api_configured initialize_all_clients() GEMINI_API_READY = is_gemini_api_configured() HF_API_READY = is_hf_api_configured() from core.generation_engine import generate_initial_solutions from core.evaluation_engine import evaluate_solution_candidate, EvaluationResultOutput from core.evolution_engine import evolve_solution from prompts.system_prompts import get_system_prompt from prompts.prompt_templates import format_code_test_analysis_user_prompt from core.safe_executor import execute_python_code_with_tests, ExecutionResult # For re-evaluating # --- Application Configuration --- # (This section should ideally move to a config file or env vars for production) AVAILABLE_MODELS_CONFIG = {} UI_DEFAULT_MODEL_KEY = None GEMINI_1_5_PRO_LATEST_ID = "gemini-1.5-pro-latest" # Ensure this is the correct ID usable via API GEMINI_1_5_FLASH_LATEST_ID = "gemini-1.5-flash-latest" if GEMINI_API_READY: AVAILABLE_MODELS_CONFIG.update({ f"✨ Google Gemini 1.5 Pro (API)": {"id": GEMINI_1_5_PRO_LATEST_ID, "type": "google_gemini"}, f"⚡ Google Gemini 1.5 Flash (API)": {"id": GEMINI_1_5_FLASH_LATEST_ID, "type": "google_gemini"}, "Legacy Gemini 1.0 Pro (API)": {"id": "gemini-1.0-pro-latest", "type": "google_gemini"}, }) UI_DEFAULT_MODEL_KEY = f"✨ Google Gemini 1.5 Pro (API)" if UI_DEFAULT_MODEL_KEY not in AVAILABLE_MODELS_CONFIG: UI_DEFAULT_MODEL_KEY = f"⚡ Google Gemini 1.5 Flash (API)" else: print("WARNING: app.py - Gemini API not configured.") if HF_API_READY: AVAILABLE_MODELS_CONFIG.update({ "Gemma 2B (HF Test)": {"id": "google/gemma-2b-it", "type": "hf"}, "Mistral 7B (HF)": {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf"}, }) if not UI_DEFAULT_MODEL_KEY: UI_DEFAULT_MODEL_KEY = "Gemma 2B (HF Test)" else: print("WARNING: app.py - HF API not configured.") if not AVAILABLE_MODELS_CONFIG: AVAILABLE_MODELS_CONFIG["No Models Available (Setup API Keys!)"] = {"id": "dummy_error", "type": "none"} UI_DEFAULT_MODEL_KEY = "No Models Available (Setup API Keys!)" elif not UI_DEFAULT_MODEL_KEY and AVAILABLE_MODELS_CONFIG: UI_DEFAULT_MODEL_KEY = list(AVAILABLE_MODELS_CONFIG.keys())[0] # --- UI Customization (Conceptual - real CSS would be in a file) --- # For a "WOW" UI, you'd link a custom CSS file. # Here's a conceptual placeholder for some styles we might imply. APP_THEME = gr.themes.Soft( primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky, neutral_hue=gr.themes.colors.slate, font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], ).set( # Example: input_background_fill="rgba(240, 240, 240, 0.5)" # Slightly transparent inputs # button_primary_background_fill="linear-gradient(to bottom right, hsl(210, 80%, 50%), hsl(210, 100%, 30%))" ) # --- Main Orchestration Logic (More detailed progress and error handling for UI) --- def run_algoforge_orchestrator_ui_wrapper( problem_type_selected: str, problem_description_text: str, initial_hints_text: str, user_provided_tests_code: str, num_initial_solutions_to_gen: int, selected_model_ui_key: str, genesis_temp: float, genesis_max_tokens: int, critique_temp: float, critique_max_tokens: int, evolution_temp: float, evolution_max_tokens: int, # Gradio's Request object can give session info if needed for advanced state # request: gr.Request ): # This wrapper allows for more fine-grained UI updates via yielding # and handles the overall try-except for better error display. log_accumulator = [f"**AlgoForge Omega™ Cycle Starting at {time.strftime('%Y-%m-%d %H:%M:%S')}**\n"] # Initial state for UI outputs yield { output_status_bar: gr.HTML(value="

🚀 Initializing AlgoForge Omega™...

", visible=True), output_initial_solutions_accordion: gr.Accordion(label="⏳ Generating Initial Candidates...", open=False, visible=True), output_initial_solutions_markdown: gr.Markdown(value="Working...", visible=True), output_champion_accordion: gr.Accordion(label="⏳ Awaiting Champion Selection...", open=False, visible=False), output_champion_markdown: gr.Markdown(value="", visible=False), output_evolved_accordion: gr.Accordion(label="⏳ Awaiting Evolution...", open=False, visible=False), output_evolved_markdown: gr.Markdown(value="", visible=False), output_ai_test_analysis_markdown: gr.Markdown(value="", visible=False), output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator), visible=True), engage_button: gr.Button(interactive=False) # Disable button during run } try: start_time = time.time() if not problem_description_text.strip(): raise ValueError("Problem Description is mandatory.") current_model_config = AVAILABLE_MODELS_CONFIG.get(selected_model_ui_key) if not current_model_config or current_model_config["type"] == "none": raise ValueError(f"No valid LLM selected ('{selected_model_ui_key}'). Check API key configurations.") log_accumulator.append(f"Selected Model: {selected_model_ui_key} (Type: {current_model_config['type']}, ID: {current_model_config['id']})") log_accumulator.append(f"Problem Type: {problem_type_selected}") log_accumulator.append(f"User Tests Provided: {'Yes' if user_provided_tests_code.strip() else 'No'}\n") yield { output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) } llm_config_genesis = {"type": current_model_config["type"], "model_id": current_model_config["id"], "temp": genesis_temp, "max_tokens": genesis_max_tokens} llm_config_critique = {"type": current_model_config["type"], "model_id": current_model_config["id"], "temp": critique_temp, "max_tokens": critique_max_tokens} llm_config_evolution = {"type": current_model_config["type"], "model_id": current_model_config["id"], "temp": evolution_temp, "max_tokens": evolution_max_tokens} # --- STAGE 1: GENESIS --- yield { output_status_bar: gr.HTML(value="

🧬 Stage 1: Genesis Engine - Generating Solutions...

") } log_accumulator.append("**------ STAGE 1: GENESIS ENGINE ------**") initial_raw_solutions = generate_initial_solutions(problem_description_text, initial_hints_text, problem_type_selected, num_initial_solutions_to_gen, llm_config_genesis) log_accumulator.append(f"Genesis Engine produced {len(initial_raw_solutions)} raw candidate(s).") for i, sol_text in enumerate(initial_raw_solutions): log_accumulator.append(f" Candidate {i+1} (Raw Snippet): {str(sol_text)[:100]}...") yield { output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) } # --- STAGE 2: CRITIQUE & AUTOMATED EVALUATION --- yield { output_status_bar: gr.HTML(value="

🔬 Stage 2: Critique Crucible - Evaluating Candidates...

"), output_initial_solutions_accordion: gr.Accordion(label="Initial Candidates & Evaluations (Processing...)", open=True) } log_accumulator.append("\n**------ STAGE 2: CRITIQUE CRUCIBLE & AUTOMATED EVALUATION ------**") evaluated_candidates_list = [] initial_solutions_md_accumulator = ["**Initial Candidates & Detailed Evaluations:**\n"] for i, candidate_solution_text in enumerate(initial_raw_solutions): log_accumulator.append(f"\n--- Evaluating Candidate {i+1} ---") yield { output_status_bar: gr.HTML(value=f"

🔬 Evaluating Candidate {i+1} of {num_initial_solutions_to_gen}...

") } evaluation_output_obj = evaluate_solution_candidate(str(candidate_solution_text), problem_description_text, problem_type_selected, user_provided_tests_code, llm_config_critique) evaluated_candidates_list.append({"id": i + 1, "solution_text": str(candidate_solution_text), "evaluation_obj": evaluation_output_obj}) log_accumulator.append(f" Combined Score: {evaluation_output_obj.combined_score}/10") # ... (more detailed logging from evaluation_obj as before) # Update UI with this candidate's evaluation progressively current_eval_md = ( f"**Candidate {i+1} (Score: {evaluation_output_obj.combined_score}/10):**\n" f"```python\n{str(candidate_solution_text)}\n```\n\n" f"**Evaluation Verdict:**\n{evaluation_output_obj.get_display_critique()}\n---" ) initial_solutions_md_accumulator.append(current_eval_md) yield { output_initial_solutions_markdown: gr.Markdown(value="\n".join(initial_solutions_md_accumulator)), output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) } # --- STAGE 3: SELECTION OF CHAMPION --- yield { output_status_bar: gr.HTML(value="

🏆 Stage 3: Selecting Champion Candidate...

") } log_accumulator.append("\n**------ STAGE 3: CHAMPION SELECTION ------**") potentially_viable_candidates = [c for c in evaluated_candidates_list if c["evaluation_obj"] and c["evaluation_obj"].combined_score > 0 and not str(c["solution_text"]).startswith("ERROR")] if not potentially_viable_candidates: raise ValueError("No viable candidate solutions found after evaluation. All attempts may have failed or scored too low.") champion_candidate_data = sorted(potentially_viable_candidates, key=lambda x: x["evaluation_obj"].combined_score, reverse=True)[0] log_accumulator.append(f"Champion Selected: Candidate {champion_candidate_data['id']} with score {champion_candidate_data['evaluation_obj'].combined_score}/10.") champion_display_markdown = ( f"**Champion Candidate ID: {champion_candidate_data['id']} " f"(Original Score: {champion_candidate_data['evaluation_obj'].combined_score}/10):**\n" f"```python\n{champion_candidate_data['solution_text']}\n```\n\n" f"**Original Comprehensive Evaluation:**\n{champion_candidate_data['evaluation_obj'].get_display_critique()}" ) yield { output_champion_accordion: gr.Accordion(label=f"🏆 Champion: Candidate {champion_candidate_data['id']} (Score: {champion_candidate_data['evaluation_obj'].combined_score}/10)", open=True, visible=True), output_champion_markdown: gr.Markdown(value=champion_display_markdown, visible=True), output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) } # --- STAGE 4: EVOLUTIONARY FORGE --- yield { output_status_bar: gr.HTML(value="

🛠️ Stage 4: Evolutionary Forge - Refining Champion...

") } log_accumulator.append("\n**------ STAGE 4: EVOLUTIONARY FORGE ------**") evolved_solution_code = evolve_solution( str(champion_candidate_data["solution_text"]), champion_candidate_data["evaluation_obj"], problem_description_text, problem_type_selected, llm_config_evolution ) log_accumulator.append(f"Raw Evolved Solution (Snippet): {str(evolved_solution_code)[:100]}...") evolved_solution_display_markdown = "" ai_test_analysis_markdown = "" if str(evolved_solution_code).startswith("ERROR"): evolved_solution_display_markdown = f"

**Evolution Stage Failed:**
{evolved_solution_code}

" else: evolved_solution_display_markdown = f"**✨ AlgoForge Omega™ Evolved Artifact ✨:**\n```python\n{evolved_solution_code}\n```" if "python" in problem_type_selected.lower() and user_provided_tests_code.strip(): yield { output_status_bar: gr.HTML(value="

🧪 Post-Evolution: Re-testing Evolved Code...

") } log_accumulator.append("\n--- Post-Evolution Test of Evolved Code ---") from core.safe_executor import execute_python_code_with_tests # Ensure imported evolved_code_exec_result = execute_python_code_with_tests(str(evolved_solution_code), user_provided_tests_code, timeout_seconds=10) evolved_solution_display_markdown += ( f"\n\n**Post-Evolution Automated Test Results (Simulated):**\n" f" Status: {'SUCCESS' if evolved_code_exec_result.success else 'FAILED/ERRORS'}\n" f" Tests Attempted: {evolved_code_exec_result.total_tests}\n" f" Tests Passed: {evolved_code_exec_result.passed_tests}\n" f" Execution Time: {evolved_code_exec_result.execution_time:.4f}s\n" ) if evolved_code_exec_result.compilation_error: evolved_solution_display_markdown += f" Compilation Error: {evolved_code_exec_result.compilation_error}\n" elif evolved_code_exec_result.timeout_error: evolved_solution_display_markdown += f" Timeout Error.\n" elif evolved_code_exec_result.error: evolved_solution_display_markdown += f" Execution Error/Output: {evolved_code_exec_result.overall_error_summary}\n" elif evolved_code_exec_result.stdout: evolved_solution_display_markdown += f" Execution Stdout:\n```\n{evolved_code_exec_result.stdout[:300].strip()}\n```\n" log_accumulator.append(f" Evolved Code Test Results: {evolved_code_exec_result}") if evolved_code_exec_result.total_tests > 0 : yield { output_status_bar: gr.HTML(value="

🧠 Post-Evolution: AI Analyzing Test Results...

") } log_accumulator.append("\n--- AI Analysis of Evolved Code's Test Results ---") exec_summary_for_analysis = str(evolved_code_exec_result.overall_error_summary or "Tests completed.") analysis_user_prompt = format_code_test_analysis_user_prompt(str(evolved_solution_code), user_provided_tests_code, f"Passed: {evolved_code_exec_result.passed_tests}/{evolved_code_exec_result.total_tests}. Detail: {exec_summary_for_analysis}") analysis_system_prompt = get_system_prompt("code_execution_explainer") llm_analysis_config = {"type": current_model_config["type"], "model_id": current_model_config["id"], "temp": 0.3, "max_tokens": critique_max_tokens + 200} from core.llm_clients import call_huggingface_api, call_gemini_api explanation_response_obj = None if llm_analysis_config["type"] == "hf": explanation_response_obj = call_huggingface_api(analysis_user_prompt, llm_analysis_config["model_id"], llm_analysis_config["temp"], llm_analysis_config["max_tokens"], analysis_system_prompt) elif llm_analysis_config["type"] == "google_gemini": explanation_response_obj = call_gemini_api(analysis_user_prompt, llm_analysis_config["model_id"], llm_analysis_config["temp"], llm_analysis_config["max_tokens"], analysis_system_prompt) if explanation_response_obj and explanation_response_obj.success: ai_test_analysis_markdown = f"**AI Analysis of Evolved Code's Test Performance:**\n{explanation_response_obj.text}" elif explanation_response_obj: ai_test_analysis_markdown = f"

**AI Analysis of Test Performance Failed:**
{explanation_response_obj.error}

" log_accumulator.append(f" AI Test Analysis result logged.") total_time = time.time() - start_time log_accumulator.append(f"\n**AlgoForge Omega™ Cycle Complete. Total time: {total_time:.2f} seconds.**") yield { output_status_bar: gr.HTML(value=f"

✅ Cycle Complete! ({total_time:.2f}s)

"), output_evolved_accordion: gr.Accordion(label="🌟 Evolved Artifact & Test Analysis", open=True, visible=True), output_evolved_markdown: gr.Markdown(value=evolved_solution_display_markdown, visible=True), output_ai_test_analysis_markdown: gr.Markdown(value=ai_test_analysis_markdown, visible=True if ai_test_analysis_markdown else False), output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)), engage_button: gr.Button(interactive=True) # Re-enable button } except ValueError as ve: # Catch our specific input/config errors log_accumulator.append(f"\n**INPUT/CONFIG ERROR:** {ve}") yield { output_status_bar: gr.HTML(value=f"

❌ CONFIGURATION ERROR: {ve}

", visible=True), output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)), engage_button: gr.Button(interactive=True) } except Exception as e: log_accumulator.append(f"\n**UNEXPECTED RUNTIME ERROR:** {type(e).__name__} - {e}\n{traceback.format_exc()}") # For other outputs, we might want to clear them or show a general error message yield { output_status_bar: gr.HTML(value=f"

❌ UNEXPECTED ERROR: {e}. Check logs.

", visible=True), output_initial_solutions_markdown: gr.Markdown(value="An unexpected error occurred. Please check the interaction log."), output_champion_markdown: gr.Markdown(value="Error state."), output_evolved_markdown: gr.Markdown(value="Error state."), output_ai_test_analysis_markdown: gr.Markdown(value="Error state."), output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)), engage_button: gr.Button(interactive=True) } # --- Gradio UI Definition --- # (This section is the full UI layout with improvements) css = """ body { font-family: 'Inter', sans-serif; } .gradio-container { max-width: 1280px !important; margin: auto !important; } .gr-button-primary { background: linear-gradient(135deg, #007bff 0%, #0056b3 100%) !important; color: white !important; border: none !important; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important; transition: all 0.2s ease-in-out !important; } .gr-button-primary:hover { transform: translateY(-2px) !important; box-shadow: 0 6px 12px rgba(0, 0, 0, 0.15) !important; } .status-bar p { padding: 8px 12px; border-radius: 6px; font-weight: 500; text-align: center; margin-bottom: 10px; /* Add some space below status bar */ } .accordion-section .gr-markdown { padding-top: 5px; padding-bottom: 5px; } .output-tabs .gr-tabitem {min-height: 400px;} /* Ensure tabs have some min height */ """ with gr.Blocks(theme=APP_THEME, css=css, title="✨ AlgoForge Omega™ ✨") as app_demo: gr.Markdown("# ✨ AlgoForge Omega™ ✨\n### Conceptual AI-Powered Algorithm & Application Foundry") gr.Markdown( "Define a challenge, configure the AI forge, and witness the (conceptual) evolution of solutions, " "now with (simulated) unit testing and more detailed feedback loops!" ) with gr.Row(equal_height=False): # --- INPUT COLUMN --- with gr.Column(scale=2, min_width=400): gr.Markdown("## 💡 1. Define the Challenge") with gr.Group(): problem_type_dropdown = gr.Dropdown( choices=["Python Algorithm with Tests", "Python Algorithm (Critique Only)", "General Algorithm Idea", "Conceptual System Design", "Pseudocode Refinement"], label="Problem Type", value="Python Algorithm with Tests", info="Select '...with Tests' to enable (simulated) unit testing if you provide tests below." ) problem_description_textbox = gr.Textbox( lines=7, label="Problem Description / Desired Outcome", placeholder="Example for 'Python Algorithm with Tests':\n`def calculate_factorial(n: int) -> int:`\nCalculates factorial of n. Should handle n=0 (returns 1) and raise ValueError for n<0." ) initial_hints_textbox = gr.Textbox( lines=4, label="Initial Thoughts / Constraints / Seed Ideas (Optional)", placeholder="E.g., 'Prefer an iterative solution over recursive for factorial.' or 'Consider time complexity and edge cases like empty inputs.'" ) user_tests_textbox = gr.Textbox( lines=7, label="Python Unit Tests (Optional, one `assert` per line)", placeholder="assert calculate_factorial(0) == 1\nassert calculate_factorial(5) == 120\n# For expected errors (advanced, simulated):\n# try:\n# calculate_factorial(-1)\n# except ValueError:\n# assert True\n# else:\n# assert False, \"ValueError not raised\"", info="For 'Python Algorithm with Tests'. Ensure function names match your problem description. Basic try-except for error testing is crudely simulated." ) gr.Markdown("## ⚙️ 2. Configure The Forge") with gr.Group(): api_status_html = gr.HTML() # For dynamic API status # Logic to set API status text (must be done after initialize_all_clients) status_messages = [] if not GEMINI_API_READY and not HF_API_READY: status_messages.append("

⚠️ CRITICAL: NO APIs CONFIGURED. App non-functional.

") else: if GEMINI_API_READY: status_messages.append("

✅ Google Gemini API Ready.

") else: status_messages.append("

⚠️ Google Gemini API NOT Ready (Check GOOGLE_API_KEY).

") if HF_API_READY: status_messages.append("

✅ Hugging Face API Ready.

") else: status_messages.append("

⚠️ Hugging Face API NOT Ready (Check HF_TOKEN).

") api_status_html.value = "".join(status_messages) model_selection_dropdown = gr.Dropdown( choices=list(AVAILABLE_MODELS_CONFIG.keys()), value=UI_DEFAULT_MODEL_KEY if UI_DEFAULT_MODEL_KEY in AVAILABLE_MODELS_CONFIG else (list(AVAILABLE_MODELS_CONFIG.keys())[0] if AVAILABLE_MODELS_CONFIG else None), label="LLM Core Model", info="Ensure the corresponding API key is correctly set in Space Secrets." ) num_initial_solutions_slider = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="# Initial Solutions (Genesis Engine)", info="More solutions take longer but provide more diversity.") with gr.Accordion("Advanced LLM Parameters (Tune with Caution!)", open=False): with gr.Row(): genesis_temp_slider = gr.Slider(minimum=0.0, maximum=1.2, value=0.7, step=0.05, label="Genesis Temp") genesis_max_tokens_slider = gr.Slider(minimum=256, maximum=4096, value=1024, step=128, label="Genesis Max Tokens") with gr.Row(): critique_temp_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Critique Temp") critique_max_tokens_slider = gr.Slider(minimum=150, maximum=2048, value=768, step=64, label="Critique Max Tokens") with gr.Row(): evolution_temp_slider = gr.Slider(minimum=0.0, maximum=1.2, value=0.75, step=0.05, label="Evolution Temp") evolution_max_tokens_slider = gr.Slider(minimum=256, maximum=4096, value=1536, step=128, label="Evolution Max Tokens") engage_button = gr.Button("🚀 ENGAGE ALGOFORGE OMEGA™ 🚀", variant="primary", size="lg", elem_id="engage_button_elem") # --- OUTPUT COLUMN --- with gr.Column(scale=3, min_width=600): gr.Markdown("## 🔥 3. The Forge's Output") output_status_bar = gr.HTML(value="

Idle. Define a challenge and engage!

", elem_classes=["status-bar"], visible=True) with gr.Tabs(elem_id="output_tabs_elem", elem_classes=["output-tabs"]): with gr.TabItem("📜 Initial Candidates & Evaluations", id="tab_initial_evals"): output_initial_solutions_accordion = gr.Accordion(label="Initial Candidates & Evaluations", open=True, visible=False, elem_classes=["accordion-section"]) with output_initial_solutions_accordion: output_initial_solutions_markdown = gr.Markdown(visible=True) with gr.TabItem("🏆 Champion Candidate", id="tab_champion"): output_champion_accordion = gr.Accordion(label="Champion Candidate (Pre-Evolution)", open=True, visible=False, elem_classes=["accordion-section"]) with output_champion_accordion: output_champion_markdown = gr.Markdown(visible=True) with gr.TabItem("🌟 Evolved & Tested", id="tab_evolved"): output_evolved_accordion = gr.Accordion(label="Evolved Artifact & Test Analysis", open=True, visible=False, elem_classes=["accordion-section"]) with output_evolved_accordion: output_evolved_markdown = gr.Markdown(visible=True) output_ai_test_analysis_markdown = gr.Markdown(visible=True, label="AI Analysis of Evolved Code's Tests") with gr.TabItem("🛠️ Interaction Log", id="tab_log"): with gr.Accordion(label="Developer Interaction Log", open=True, elem_classes=["accordion-section"]): # Always open log output_interaction_log_markdown = gr.Markdown(value="Log will appear here...", visible=True) # Connect button to the orchestration function wrapper # The wrapper handles UI updates via yield engage_button.click( fn=run_algoforge_orchestrator_ui_wrapper, # Call the wrapper inputs=[ problem_type_dropdown, problem_description_textbox, initial_hints_textbox, user_tests_textbox, num_initial_solutions_slider, model_selection_dropdown, genesis_temp_slider, genesis_max_tokens_slider, critique_temp_slider, critique_max_tokens_slider, evolution_temp_slider, evolution_max_tokens_slider ], outputs=[ # These are the components updated by the `yield` statements output_status_bar, output_initial_solutions_accordion, output_initial_solutions_markdown, output_champion_accordion, output_champion_markdown, output_evolved_accordion, output_evolved_markdown, output_ai_test_analysis_markdown, output_interaction_log_markdown, engage_button # To disable/re-enable it ] ) gr.Markdown("---") gr.Markdown( "**Disclaimer:** This is a conceptual, educational demonstration. " "The (simulated) unit testing feature is for illustrative purposes. " "**NEVER run LLM-generated code from an untrusted source in an unrestricted environment.** " "Implementing robust and secure code sandboxing is complex and absolutely critical for safety in real-world applications. " "LLM outputs always require careful human review and verification." ) gr.HTML("

AlgoForge Omega™ - Powered by Gradio, Gemini & Hugging Face Models

") # --- Entry Point for Running the Gradio App --- if __name__ == "__main__": print("="*80) print("AlgoForge Omega™ Conceptual Demo (WOW UI Attempt) - Launching...") print(f" Google Gemini API Configured (from app.py check): {GEMINI_API_READY}") print(f" Hugging Face API Configured (from app.py check): {HF_API_READY}") if not GEMINI_API_READY and not HF_API_READY: print(" CRITICAL WARNING: No API keys seem to be configured correctly. The application will likely be non-functional.") print(f" UI Default Model Key: {UI_DEFAULT_MODEL_KEY}") print(f" Available models for UI: {list(AVAILABLE_MODELS_CONFIG.keys())}") print("="*80) app_demo.launch(debug=True, server_name="0.0.0.0")