# storyverse_weaver/core/llm_services.py import os import google.generativeai as genai from huggingface_hub import InferenceClient # from dotenv import load_dotenv # Optional: for local .env file # load_dotenv() # Load environment variables from .env file if present GOOGLE_API_KEY = os.getenv("STORYVERSE_GOOGLE_API_KEY") # Use specific env var names HF_TOKEN = os.getenv("STORYVERSE_HF_TOKEN") GEMINI_TEXT_CONFIGURED = False HF_TEXT_CONFIGURED = False hf_inference_text_client = None class LLMTextResponse: def __init__(self, text=None, error=None, success=True, model_id_used="unknown_text_llm"): self.text, self.error, self.success, self.model_id_used = text, error, success, model_id_used def initialize_text_llms(): global GOOGLE_API_KEY, HF_TOKEN, GEMINI_TEXT_CONFIGURED, HF_TEXT_CONFIGURED, hf_inference_text_client print("INFO: llm_services.py - Initializing Text LLM clients...") if GOOGLE_API_KEY and GOOGLE_API_KEY.strip(): try: genai.configure(api_key=GOOGLE_API_KEY) GEMINI_TEXT_CONFIGURED = True print("SUCCESS: llm_services.py - Google Gemini API (for text) configured.") except Exception as e: print(f"ERROR: llm_services.py - Failed to configure Google Gemini API: {e}") GEMINI_TEXT_CONFIGURED = False else: print("WARNING: llm_services.py - STORYVERSE_GOOGLE_API_KEY not found or empty.") GEMINI_TEXT_CONFIGURED = False if HF_TOKEN and HF_TOKEN.strip(): try: hf_inference_text_client = InferenceClient(token=HF_TOKEN) HF_TEXT_CONFIGURED = True print("SUCCESS: llm_services.py - Hugging Face InferenceClient (for text) initialized.") except Exception as e: print(f"ERROR: llm_services.py - Failed to initialize HF InferenceClient: {e}") HF_TEXT_CONFIGURED = False else: print("WARNING: llm_services.py - STORYVERSE_HF_TOKEN not found or empty.") HF_TEXT_CONFIGURED = False print(f"INFO: llm_services.py - Text LLM Init complete. Gemini Text: {GEMINI_TEXT_CONFIGURED}, HF Text: {HF_TEXT_CONFIGURED}") def is_gemini_text_ready(): return GEMINI_TEXT_CONFIGURED def is_hf_text_ready(): return HF_TEXT_CONFIGURED def generate_text_gemini(prompt: str, model_id: str = "gemini-1.5-flash-latest", system_prompt: str = None, temperature: float = 0.7, max_tokens: int = 512) -> LLMTextResponse: if not is_gemini_text_ready(): return LLMTextResponse(error="Gemini text API not configured.", success=False, model_id_used=model_id) try: model = genai.GenerativeModel(model_name=model_id, system_instruction=system_prompt) config = genai.types.GenerationConfig(temperature=temperature, max_output_tokens=max_tokens) response = model.generate_content(prompt, generation_config=config) # Add robust response checking as in AlgoForge's llm_clients.py if response.prompt_feedback and response.prompt_feedback.block_reason: return LLMTextResponse(error=f"Gemini: Prompt blocked ({response.prompt_feedback.block_reason})", success=False, model_id_used=model_id) if not response.candidates or not response.candidates[0].content.parts: return LLMTextResponse(error=f"Gemini: No content generated (Finish reason: {response.candidates[0].finish_reason if response.candidates else 'Unknown'})", success=False, model_id_used=model_id) return LLMTextResponse(text=response.text, model_id_used=model_id) except Exception as e: return LLMTextResponse(error=f"Gemini API Error ({model_id}): {type(e).__name__} - {str(e)}", success=False, model_id_used=model_id) def generate_text_hf(prompt: str, model_id: str = "mistralai/Mistral-7B-Instruct-v0.2", system_prompt: str = None, temperature: float = 0.7, max_tokens: int = 512) -> LLMTextResponse: if not is_hf_text_ready() or not hf_inference_text_client: return LLMTextResponse(error="HF text API not configured.", success=False, model_id_used=model_id) full_prompt = f"[INST] <>\n{system_prompt}\n<>\n\n{prompt} [/INST]" if system_prompt else prompt try: use_sample = temperature > 0.001 response_text = hf_inference_text_client.text_generation( full_prompt, model=model_id, max_new_tokens=max_tokens, temperature=temperature if use_sample else None, do_sample=use_sample ) return LLMTextResponse(text=response_text, model_id_used=model_id) except Exception as e: return LLMTextResponse(error=f"HF API Error ({model_id}): {type(e).__name__} - {str(e)}", success=False, model_id_used=model_id) print("DEBUG: core.llm_services (for StoryVerseWeaver) - Module defined.")# storyverse_weaver/core/llm_services.py import os import google.generativeai as genai from huggingface_hub import InferenceClient # from dotenv import load_dotenv # Optional: for local .env file # load_dotenv() # Load environment variables from .env file if present GOOGLE_API_KEY = os.getenv("STORYVERSE_GOOGLE_API_KEY") # Use specific env var names HF_TOKEN = os.getenv("STORYVERSE_HF_TOKEN") GEMINI_TEXT_CONFIGURED = False HF_TEXT_CONFIGURED = False hf_inference_text_client = None class LLMTextResponse: def __init__(self, text=None, error=None, success=True, model_id_used="unknown_text_llm"): self.text, self.error, self.success, self.model_id_used = text, error, success, model_id_used def initialize_text_llms(): global GOOGLE_API_KEY, HF_TOKEN, GEMINI_TEXT_CONFIGURED, HF_TEXT_CONFIGURED, hf_inference_text_client print("INFO: llm_services.py - Initializing Text LLM clients...") if GOOGLE_API_KEY and GOOGLE_API_KEY.strip(): try: genai.configure(api_key=GOOGLE_API_KEY) GEMINI_TEXT_CONFIGURED = True print("SUCCESS: llm_services.py - Google Gemini API (for text) configured.") except Exception as e: print(f"ERROR: llm_services.py - Failed to configure Google Gemini API: {e}") GEMINI_TEXT_CONFIGURED = False else: print("WARNING: llm_services.py - STORYVERSE_GOOGLE_API_KEY not found or empty.") GEMINI_TEXT_CONFIGURED = False if HF_TOKEN and HF_TOKEN.strip(): try: hf_inference_text_client = InferenceClient(token=HF_TOKEN) HF_TEXT_CONFIGURED = True print("SUCCESS: llm_services.py - Hugging Face InferenceClient (for text) initialized.") except Exception as e: print(f"ERROR: llm_services.py - Failed to initialize HF InferenceClient: {e}") HF_TEXT_CONFIGURED = False else: print("WARNING: llm_services.py - STORYVERSE_HF_TOKEN not found or empty.") HF_TEXT_CONFIGURED = False print(f"INFO: llm_services.py - Text LLM Init complete. Gemini Text: {GEMINI_TEXT_CONFIGURED}, HF Text: {HF_TEXT_CONFIGURED}") def is_gemini_text_ready(): return GEMINI_TEXT_CONFIGURED def is_hf_text_ready(): return HF_TEXT_CONFIGURED def generate_text_gemini(prompt: str, model_id: str = "gemini-1.5-flash-latest", system_prompt: str = None, temperature: float = 0.7, max_tokens: int = 512) -> LLMTextResponse: if not is_gemini_text_ready(): return LLMTextResponse(error="Gemini text API not configured.", success=False, model_id_used=model_id) try: model = genai.GenerativeModel(model_name=model_id, system_instruction=system_prompt) config = genai.types.GenerationConfig(temperature=temperature, max_output_tokens=max_tokens) response = model.generate_content(prompt, generation_config=config) # Add robust response checking as in AlgoForge's llm_clients.py if response.prompt_feedback and response.prompt_feedback.block_reason: return LLMTextResponse(error=f"Gemini: Prompt blocked ({response.prompt_feedback.block_reason})", success=False, model_id_used=model_id) if not response.candidates or not response.candidates[0].content.parts: return LLMTextResponse(error=f"Gemini: No content generated (Finish reason: {response.candidates[0].finish_reason if response.candidates else 'Unknown'})", success=False, model_id_used=model_id) return LLMTextResponse(text=response.text, model_id_used=model_id) except Exception as e: return LLMTextResponse(error=f"Gemini API Error ({model_id}): {type(e).__name__} - {str(e)}", success=False, model_id_used=model_id) def generate_text_hf(prompt: str, model_id: str = "mistralai/Mistral-7B-Instruct-v0.2", system_prompt: str = None, temperature: float = 0.7, max_tokens: int = 512) -> LLMTextResponse: if not is_hf_text_ready() or not hf_inference_text_client: return LLMTextResponse(error="HF text API not configured.", success=False, model_id_used=model_id) full_prompt = f"[INST] <>\n{system_prompt}\n<>\n\n{prompt} [/INST]" if system_prompt else prompt try: use_sample = temperature > 0.001 response_text = hf_inference_text_client.text_generation( full_prompt, model=model_id, max_new_tokens=max_tokens, temperature=temperature if use_sample else None, do_sample=use_sample ) return LLMTextResponse(text=response_text, model_id_used=model_id) except Exception as e: return LLMTextResponse(error=f"HF API Error ({model_id}): {type(e).__name__} - {str(e)}", success=False, model_id_used=model_id) print("DEBUG: core.llm_services (for StoryVerseWeaver) - Module defined.")