|
|
|
import streamlit as st |
|
import json |
|
import re |
|
import os |
|
import traceback |
|
from dotenv import load_dotenv |
|
|
|
|
|
try: |
|
from agent import ClinicalAgent, AgentState, check_red_flags |
|
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage |
|
except ImportError as e: |
|
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.") |
|
st.stop() |
|
|
|
|
|
load_dotenv() |
|
|
|
UMLS_API_KEY = os.environ.get("UMLS_API_KEY") |
|
GROQ_API_KEY = os.environ.get("GROQ_API_KEY") |
|
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY") |
|
|
|
missing_keys = [] |
|
if not UMLS_API_KEY: |
|
missing_keys.append("UMLS_API_KEY") |
|
if not GROQ_API_KEY: |
|
missing_keys.append("GROQ_API_KEY") |
|
if not TAVILY_API_KEY: |
|
missing_keys.append("TAVILY_API_KEY") |
|
|
|
if missing_keys: |
|
st.error(f"Missing required API Key(s): {', '.join(missing_keys)}. Please set them in Hugging Face Space Secrets or environment variables.") |
|
st.stop() |
|
|
|
|
|
class ClinicalAppSettings: |
|
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)" |
|
PAGE_LAYOUT = "wide" |
|
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)" |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT) |
|
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}") |
|
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}") |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
if "patient_data" not in st.session_state: |
|
st.session_state.patient_data = None |
|
if "summary" not in st.session_state: |
|
st.session_state.summary = None |
|
|
|
|
|
if "agent" not in st.session_state: |
|
try: |
|
st.session_state.agent = ClinicalAgent() |
|
print("ClinicalAgent successfully initialized in Streamlit session state.") |
|
except Exception as e: |
|
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.") |
|
print(f"ERROR Initializing ClinicalAgent: {e}") |
|
traceback.print_exc() |
|
st.stop() |
|
|
|
|
|
with st.sidebar: |
|
st.header("π Patient Intake Form") |
|
|
|
st.subheader("Demographics") |
|
age = st.number_input("Age", 0, 120, 55, key="sb_age") |
|
sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex") |
|
|
|
st.subheader("HPI") |
|
chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc") |
|
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi") |
|
symptoms = st.multiselect( |
|
"Symptoms", |
|
["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], |
|
default=["Nausea", "Diaphoresis"], |
|
key="sb_sym" |
|
) |
|
|
|
st.subheader("History") |
|
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh") |
|
psh = st.text_area("PSH", "Appendectomy", key="sb_psh") |
|
|
|
st.subheader("Meds & Allergies") |
|
current_meds_str = st.text_area( |
|
"Current Meds", |
|
"Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", |
|
key="sb_meds" |
|
) |
|
allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies") |
|
|
|
st.subheader("Social/Family") |
|
social_history = st.text_area("SH", "Smoker", key="sb_sh") |
|
family_history = st.text_area("FHx", "Father MI", key="sb_fhx") |
|
|
|
st.subheader("Vitals & Exam") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp") |
|
hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr") |
|
rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr") |
|
with col2: |
|
bp_mmhg = st.text_input("BP", "155/90", key="sb_bp") |
|
spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2") |
|
pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain") |
|
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50, key="sb_exam") |
|
|
|
if st.button("Start/Update Consultation", key="sb_start"): |
|
|
|
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()] |
|
current_med_names_only = [] |
|
for med in current_meds_list: |
|
match = re.match(r"^\s*([a-zA-Z\-]+)", med) |
|
if match: |
|
current_med_names_only.append(match.group(1).lower()) |
|
|
|
allergies_list = [] |
|
for a in allergies_str.split(','): |
|
cleaned_allergy = a.strip() |
|
if cleaned_allergy: |
|
match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy) |
|
name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower() |
|
allergies_list.append(name_part) |
|
|
|
|
|
st.session_state.patient_data = { |
|
"demographics": {"age": age, "sex": sex}, |
|
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, |
|
"pmh": {"conditions": pmh}, |
|
"psh": {"procedures": psh}, |
|
"medications": {"current": current_meds_list, "names_only": current_med_names_only}, |
|
"allergies": allergies_list, |
|
"social_history": {"details": social_history}, |
|
"family_history": {"details": family_history}, |
|
"vitals": { |
|
"temp_c": temp_c, |
|
"hr_bpm": hr_bpm, |
|
"bp_mmhg": bp_mmhg, |
|
"rr_rpm": rr_rpm, |
|
"spo2_percent": spo2_percent, |
|
"pain_scale": pain_scale |
|
}, |
|
"exam_findings": {"notes": exam_notes} |
|
} |
|
|
|
|
|
red_flags = check_red_flags(st.session_state.patient_data) |
|
st.sidebar.markdown("---") |
|
if red_flags: |
|
st.sidebar.warning("**Initial Red Flags:**") |
|
for flag in red_flags: |
|
st.sidebar.warning(f"- {flag.replace('Red Flag: ', '')}") |
|
else: |
|
st.sidebar.success("No immediate red flags.") |
|
|
|
|
|
initial_prompt = "Initiate consultation. Review patient data and begin analysis." |
|
st.session_state.messages = [HumanMessage(content=initial_prompt)] |
|
st.session_state.summary = None |
|
st.success("Patient data loaded/updated.") |
|
|
|
st.rerun() |
|
|
|
|
|
st.header("π¬ Clinical Consultation") |
|
|
|
for msg in st.session_state.messages: |
|
if isinstance(msg, HumanMessage): |
|
with st.chat_message("user"): |
|
st.markdown(msg.content) |
|
elif isinstance(msg, AIMessage): |
|
with st.chat_message("assistant"): |
|
ai_content = msg.content |
|
structured_output = None |
|
try: |
|
|
|
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE) |
|
if json_match: |
|
json_str = json_match.group(1) |
|
prefix = ai_content[:json_match.start()].strip() |
|
suffix = ai_content[json_match.end():].strip() |
|
if prefix: |
|
st.markdown(prefix) |
|
structured_output = json.loads(json_str) |
|
if suffix: |
|
st.markdown(suffix) |
|
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): |
|
structured_output = json.loads(ai_content) |
|
ai_content = "" |
|
else: |
|
st.markdown(ai_content) |
|
except Exception as e: |
|
st.markdown(ai_content) |
|
print(f"Error parsing/displaying AI JSON: {e}") |
|
|
|
if structured_output and isinstance(structured_output, dict): |
|
|
|
st.divider() |
|
st.subheader("π AI Analysis & Recommendations") |
|
cols = st.columns(2) |
|
with cols[0]: |
|
st.markdown("**Assessment:**") |
|
st.markdown(f"> {structured_output.get('assessment', 'N/A')}") |
|
st.markdown("**Differential Diagnosis:**") |
|
ddx = structured_output.get('differential_diagnosis', []) |
|
if ddx: |
|
for item in ddx: |
|
likelihood = item.get('likelihood', 'Low') |
|
if likelihood and likelihood[0] in 'HML': |
|
medal = "π₯" if likelihood[0] == 'H' else "π₯" if likelihood[0] == 'M' else "π₯" |
|
else: |
|
medal = "?" |
|
expander_title = f"{medal} {item.get('diagnosis', 'Unknown')} ({likelihood})" |
|
with st.expander(expander_title): |
|
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}") |
|
else: |
|
st.info("No DDx provided.") |
|
st.markdown("**Risk Assessment:**") |
|
risk = structured_output.get('risk_assessment', {}) |
|
flags = risk.get('identified_red_flags', []) |
|
concerns = risk.get("immediate_concerns", []) |
|
comps = risk.get("potential_complications", []) |
|
if flags: |
|
st.warning(f"**Flags:** {', '.join(flags)}") |
|
if concerns: |
|
st.warning(f"**Concerns:** {', '.join(concerns)}") |
|
if comps: |
|
st.info(f"**Potential Complications:** {', '.join(comps)}") |
|
if not flags and not concerns: |
|
st.success("No major risks highlighted.") |
|
with cols[1]: |
|
st.markdown("**Recommended Plan:**") |
|
plan = structured_output.get('recommended_plan', {}) |
|
for section in ["investigations", "therapeutics", "consultations", "patient_education"]: |
|
st.markdown(f"_{section.replace('_', ' ').capitalize()}:_") |
|
items = plan.get(section) |
|
if items and isinstance(items, list): |
|
for item in items: |
|
st.markdown(f"- {item}") |
|
elif items: |
|
st.markdown(f"- {items}") |
|
else: |
|
st.markdown("_None_") |
|
st.markdown("") |
|
st.markdown("**Rationale & Guideline Check:**") |
|
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}") |
|
interaction_summary = structured_output.get("interaction_check_summary", "") |
|
if interaction_summary: |
|
st.markdown("**Interaction Check Summary:**") |
|
st.markdown(f"> {interaction_summary}") |
|
st.divider() |
|
|
|
|
|
if getattr(msg, 'tool_calls', None): |
|
with st.expander("π οΈ AI requested actions", expanded=False): |
|
if msg.tool_calls: |
|
for tc in msg.tool_calls: |
|
try: |
|
st.code( |
|
f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", |
|
language="json" |
|
) |
|
except Exception as display_e: |
|
st.error(f"Could not display tool call args: {display_e}", icon="β οΈ") |
|
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}") |
|
else: |
|
st.caption("_No actions requested._") |
|
elif isinstance(msg, ToolMessage): |
|
tool_name_display = getattr(msg, 'name', 'tool_execution') |
|
with st.chat_message(tool_name_display, avatar="π οΈ"): |
|
try: |
|
|
|
tool_data = json.loads(msg.content) |
|
status = tool_data.get("status", "info") |
|
message = tool_data.get("message", msg.content) |
|
details = tool_data.get("details") |
|
warnings = tool_data.get("warnings") |
|
|
|
if tool_name_display == "flag_risk" and status == "flagged": |
|
st.error(f"π¨ **RISK FLAGGED:** {message}", icon="π¨") |
|
elif status in ["success", "clear"]: |
|
st.success(f"{message}", icon="β
") |
|
elif status == "warning": |
|
st.warning(f"{message}", icon="β οΈ") |
|
else: |
|
st.error(f"{message}", icon="β") |
|
if warnings and isinstance(warnings, list): |
|
st.caption("Details:") |
|
for warn in warnings: |
|
st.caption(f"- {warn}") |
|
if details: |
|
st.caption(f"Details: {details}") |
|
except json.JSONDecodeError: |
|
st.info(f"{msg.content}") |
|
except Exception as e: |
|
st.error(f"Error displaying tool message: {e}", icon="β") |
|
st.caption(f"Raw content: {msg.content}") |
|
|
|
|
|
if prompt := st.chat_input("Your message or follow-up query..."): |
|
if not st.session_state.patient_data: |
|
st.warning("Please load patient data first.") |
|
st.stop() |
|
if 'agent' not in st.session_state or not st.session_state.agent: |
|
st.error("Agent not initialized. Check logs.") |
|
st.stop() |
|
|
|
|
|
user_message = HumanMessage(content=prompt) |
|
st.session_state.messages.append(user_message) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
|
|
current_state_dict = { |
|
"messages": st.session_state.messages, |
|
"patient_data": st.session_state.patient_data, |
|
"summary": st.session_state.get("summary"), |
|
"interaction_warnings": None |
|
} |
|
|
|
|
|
with st.spinner("SynapseAI is processing..."): |
|
try: |
|
|
|
final_state = st.session_state.agent.invoke_turn(current_state_dict) |
|
|
|
|
|
st.session_state.messages = final_state.get('messages', []) |
|
st.session_state.summary = final_state.get('summary') |
|
|
|
except Exception as e: |
|
print(f"CRITICAL ERROR during agent invocation: {type(e).__name__} - {e}") |
|
traceback.print_exc() |
|
st.error(f"An error occurred during processing: {e}", icon="β") |
|
|
|
st.session_state.messages.append(AIMessage(content=f"Error during processing: {e}")) |
|
|
|
|
|
st.rerun() |
|
|
|
|
|
st.markdown("---") |
|
st.warning("**Disclaimer:** SynapseAI is for demonstration...") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|