|
|
|
import streamlit as st |
|
import requests |
|
import json |
|
import re |
|
import os |
|
import operator |
|
import traceback |
|
from functools import lru_cache |
|
from dotenv import load_dotenv |
|
|
|
from langchain_groq import ChatGroq |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage |
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field |
|
from langchain_core.tools import tool |
|
from langgraph.prebuilt import ToolExecutor |
|
from langgraph.graph import StateGraph, END |
|
|
|
from typing import Optional, List, Dict, Any, TypedDict, Annotated |
|
|
|
|
|
load_dotenv() |
|
UMLS_API_KEY = os.environ.get("UMLS_API_KEY") |
|
GROQ_API_KEY = os.environ.get("GROQ_API_KEY") |
|
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY") |
|
missing_keys = [] |
|
if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY") |
|
if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY") |
|
if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY") |
|
if missing_keys: st.error(f"Missing API Key(s): {', '.join(missing_keys)}."); st.stop() |
|
|
|
|
|
class ClinicalAppSettings: APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"; PAGE_LAYOUT = "wide"; MODEL_NAME = "llama3-70b-8192"; TEMPERATURE = 0.1; MAX_SEARCH_RESULTS = 3 |
|
class ClinicalPrompts: SYSTEM_PROMPT = """ |
|
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY] |
|
""" |
|
|
|
|
|
|
|
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"; RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"; OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json" |
|
@lru_cache(maxsize=256) |
|
def get_rxcui(drug_name: str) -> Optional[str]: |
|
if not drug_name or not isinstance(drug_name, str): return None; drug_name = drug_name.strip(); |
|
if not drug_name: return None; print(f"RxNorm Lookup for: '{drug_name}'"); |
|
try: |
|
params = {"name": drug_name, "search": 1}; response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10); response.raise_for_status(); data = response.json(); |
|
if data and "idGroup" in data and "rxnormId" in data["idGroup"]: rxcui = data["idGroup"]["rxnormId"][0]; print(f" Found RxCUI: {rxcui} for '{drug_name}'"); return rxcui |
|
else: |
|
params = {"name": drug_name}; response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10); response.raise_for_status(); data = response.json(); |
|
if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]: |
|
for group in data["drugGroup"]["conceptGroup"]: |
|
if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]: |
|
if "conceptProperties" in group and group["conceptProperties"]: rxcui = group["conceptProperties"][0].get("rxcui"); |
|
if rxcui: print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'"); return rxcui |
|
print(f" RxCUI not found for '{drug_name}'."); return None |
|
except requests.exceptions.RequestException as e: print(f" Error fetching RxCUI for '{drug_name}': {e}"); return None |
|
except json.JSONDecodeError as e: print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}"); return None |
|
except Exception as e: print(f" Unexpected error in get_rxcui for '{drug_name}': {e}"); return None |
|
@lru_cache(maxsize=128) |
|
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]: |
|
if not rxcui and not drug_name: return None; print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}"); search_terms = [] |
|
if rxcui: search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"') |
|
if drug_name: search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")') |
|
search_query = " OR ".join(search_terms); params = {"search": search_query, "limit": 1}; |
|
try: |
|
response = requests.get(OPENFDA_API_BASE, params=params, timeout=15); response.raise_for_status(); data = response.json(); |
|
if data and "results" in data and data["results"]: print(f" Found OpenFDA label for query: {search_query}"); return data["results"][0] |
|
print(f" No OpenFDA label found for query: {search_query}"); return None |
|
except requests.exceptions.RequestException as e: print(f" Error fetching OpenFDA label: {e}"); return None |
|
except json.JSONDecodeError as e: print(f" Error decoding OpenFDA JSON response: {e}"); return None |
|
except Exception as e: print(f" Unexpected error in get_openfda_label: {e}"); return None |
|
def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]: |
|
found_snippets = []; |
|
if not text_list or not search_terms: return found_snippets; search_terms_lower = [str(term).lower() for term in search_terms if term]; |
|
for text_item in text_list: |
|
if not isinstance(text_item, str): continue; text_item_lower = text_item.lower(); |
|
for term in search_terms_lower: |
|
if term in text_item_lower: |
|
start_index = text_item_lower.find(term); snippet_start = max(0, start_index - 50); snippet_end = min(len(text_item), start_index + len(term) + 100); snippet = text_item[snippet_start:snippet_end]; |
|
snippet = snippet.replace(term, f"**{term}**", 1); found_snippets.append(f"...{snippet}..."); break |
|
return found_snippets |
|
|
|
|
|
|
|
|
|
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]: |
|
if not isinstance(bp_string, str): return None; match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip()); |
|
if match: return int(match.group(1)), int(match.group(2)); return None |
|
def check_red_flags(patient_data: dict) -> List[str]: |
|
flags = []; |
|
if not patient_data: return flags; symptoms = patient_data.get("hpi", {}).get("symptoms", []); vitals = patient_data.get("vitals", {}); history = patient_data.get("pmh", {}).get("conditions", ""); symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]; |
|
if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported."); if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported."); if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported."); if "sudden vision loss" in symptoms_lower: flags.append("Red Flag: Sudden Vision Loss reported."); if "weakness on one side" in symptoms_lower: flags.append("Red Flag: Unilateral Weakness reported (potential stroke)."); if "hemoptysis" in symptoms_lower: flags.append("Red Flag: Hemoptysis (coughing up blood)."); if "syncope" in symptoms_lower: flags.append("Red Flag: Syncope (fainting)."); |
|
if vitals: temp = vitals.get("temp_c"); hr = vitals.get("hr_bpm"); rr = vitals.get("rr_rpm"); spo2 = vitals.get("spo2_percent"); bp_str = vitals.get("bp_mmhg"); |
|
if temp is not None and temp >= 38.5: flags.append(f"Red Flag: Fever ({temp}Β°C)."); if hr is not None and hr >= 120: flags.append(f"Red Flag: Tachycardia ({hr} bpm)."); if hr is not None and hr <= 50: flags.append(f"Red Flag: Bradycardia ({hr} bpm)."); if rr is not None and rr >= 24: flags.append(f"Red Flag: Tachypnea ({rr} rpm)."); if spo2 is not None and spo2 <= 92: flags.append(f"Red Flag: Hypoxia ({spo2}%)."); |
|
if bp_str: bp = parse_bp(bp_str); |
|
if bp: |
|
if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg)."); |
|
if bp[0] <= 90 or bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg)."); |
|
if history and isinstance(history, str): history_lower = history.lower(); |
|
if "history of mi" in history_lower and "chest pain" in symptoms_lower: flags.append("Red Flag: History of MI with current Chest Pain."); |
|
if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower: flags.append("Red Flag: History of DVT/PE with current Shortness of Breath."); |
|
return list(set(flags)) |
|
def format_patient_data_for_prompt(data: dict) -> str: |
|
if not data: return "No patient data provided."; prompt_str = ""; |
|
for key, value in data.items(): section_title = key.replace('_', ' ').title(); |
|
if isinstance(value, dict) and value: has_content = any(sub_value for sub_value in value.values()); |
|
if has_content: prompt_str += f"**{section_title}:**\n"; |
|
for sub_key, sub_value in value.items(): |
|
if sub_value: prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n" |
|
elif isinstance(value, list) and value: prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n" |
|
elif value and not isinstance(value, dict): prompt_str += f"**{section_title}:** {value}\n"; |
|
return prompt_str.strip() |
|
|
|
|
|
|
|
class LabOrderInput(BaseModel): test_name: str = Field(...); reason: str = Field(...); priority: str = Field("Routine") |
|
class PrescriptionInput(BaseModel): medication_name: str = Field(...); dosage: str = Field(...); route: str = Field(...); frequency: str = Field(...); duration: str = Field("As directed"); reason: str = Field(...) |
|
class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...); current_medications: Optional[List[str]] = Field(None); allergies: Optional[List[str]] = Field(None) |
|
class FlagRiskInput(BaseModel): risk_description: str = Field(...); urgency: str = Field("High") |
|
|
|
@tool("order_lab_test", args_schema=LabOrderInput) |
|
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str: |
|
print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}"); return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"}) |
|
@tool("prescribe_medication", args_schema=PrescriptionInput) |
|
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str: |
|
print(f"Executing prescribe_medication: {medication_name} {dosage}..."); return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"}) |
|
@tool("check_drug_interactions", args_schema=InteractionCheckInput) |
|
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str: |
|
|
|
print(f"\n--- Executing REAL check_drug_interactions ---"); print(f"Checking potential prescription: '{potential_prescription}'"); warnings = []; potential_med_lower = potential_prescription.lower().strip(); |
|
current_meds_list = current_medications or []; allergies_list = allergies or []; current_med_names_lower = []; |
|
for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", str(med)); |
|
if match: current_med_names_lower.append(match.group(1).lower()); |
|
allergies_lower = [str(a).lower().strip() for a in allergies_list if a]; print(f" Against Current Meds (names): {current_med_names_lower}"); print(f" Against Allergies: {allergies_lower}"); |
|
print(f" Step 1: Normalizing '{potential_prescription}'..."); potential_rxcui = get_rxcui(potential_prescription); potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription); |
|
if not potential_rxcui and not potential_label: warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete."); |
|
print(" Step 2: Performing Allergy Check..."); |
|
for allergy in allergies_lower: |
|
if allergy == potential_med_lower: warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'."); |
|
elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'."); |
|
elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'."); |
|
elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'."); |
|
if potential_label: contraindications = potential_label.get("contraindications"); warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings"); |
|
if contraindications: allergy_mentions_ci = search_text_list(contraindications, allergies_lower); |
|
if allergy_mentions_ci: warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}"); |
|
if warnings_section: allergy_mentions_warn = search_text_list(warnings_section, allergies_lower); |
|
if allergy_mentions_warn: warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}"); |
|
print(" Step 3: Performing Drug-Drug Interaction Check..."); |
|
if potential_rxcui or potential_label: |
|
for current_med_name in current_med_names_lower: |
|
if not current_med_name or current_med_name == potential_med_lower: continue; print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'..."); current_rxcui = get_rxcui(current_med_name); current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name); search_terms_for_current = [current_med_name]; |
|
if current_rxcui: search_terms_for_current.append(current_rxcui); search_terms_for_potential = [potential_med_lower]; |
|
if potential_rxcui: search_terms_for_potential.append(potential_rxcui); interaction_found_flag = False; |
|
if potential_label and potential_label.get("drug_interactions"): interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current); |
|
if interaction_mentions: warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); interaction_found_flag = True; |
|
if current_label and current_label.get("drug_interactions") and not interaction_found_flag: interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential); |
|
if interaction_mentions: warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); |
|
else: warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA."); |
|
final_warnings = list(set(warnings)); status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear"; |
|
if not final_warnings: status = "clear"; message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."; print(f"--- Interaction Check Complete for '{potential_prescription}' ---"); |
|
return json.dumps({"status": status, "message": message, "warnings": final_warnings}) |
|
@tool("flag_risk", args_schema=FlagRiskInput) |
|
def flag_risk(risk_description: str, urgency: str) -> str: |
|
print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}"); st.error(f"π¨ **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="π¨"); return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."}) |
|
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results") |
|
|
|
|
|
class AgentState(TypedDict): messages: Annotated[list[Any], operator.add]; patient_data: Optional[dict] |
|
tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool] |
|
tool_executor = ToolExecutor(tools) |
|
model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME) |
|
model_with_tools = model.bind_tools(tools) |
|
|
|
|
|
|
|
def agent_node(state: AgentState): |
|
print("\n---AGENT NODE---"); current_messages = state['messages']; |
|
if not current_messages or not isinstance(current_messages[0], SystemMessage): print("Prepending System Prompt."); current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages; |
|
print(f"Invoking LLM with {len(current_messages)} messages."); |
|
try: response = model_with_tools.invoke(current_messages); print(f"Agent Raw Response Type: {type(response)}"); |
|
if hasattr(response, 'tool_calls') and response.tool_calls: print(f"Agent Response Tool Calls: {response.tool_calls}"); else: print("Agent Response: No tool calls."); |
|
except Exception as e: print(f"ERROR in agent_node: {e}"); traceback.print_exc(); error_message = AIMessage(content=f"Error: {e}"); return {"messages": [error_message]}; |
|
return {"messages": [response]} |
|
def tool_node(state: AgentState): |
|
print("\n---TOOL NODE---"); tool_messages = []; last_message = state['messages'][-1]; |
|
if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): print("Warning: Tool node called unexpectedly."); return {"messages": []}; |
|
tool_calls = last_message.tool_calls; print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}"); prescriptions_requested = {}; interaction_checks_requested = {}; |
|
for call in tool_calls: tool_name = call.get('name'); tool_args = call.get('args', {}); |
|
if tool_name == 'prescribe_medication': med_name = tool_args.get('medication_name', '').lower(); |
|
if med_name: prescriptions_requested[med_name] = call; |
|
elif tool_name == 'check_drug_interactions': potential_med = tool_args.get('potential_prescription', '').lower(); |
|
if potential_med: interaction_checks_requested[potential_med] = call; |
|
valid_tool_calls_for_execution = []; blocked_ids = set(); |
|
for med_name, prescribe_call in prescriptions_requested.items(): |
|
if med_name not in interaction_checks_requested: st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check."); error_msg = ToolMessage(content=json.dumps({"status": "error", "message": f"Interaction check needed for '{med_name}'."}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']); tool_messages.append(error_msg); blocked_ids.add(prescribe_call['id']); |
|
valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids]; |
|
patient_data = state.get("patient_data", {}); patient_meds_full = patient_data.get("medications", {}).get("current", []); patient_allergies = patient_data.get("allergies", []); |
|
for call in valid_tool_calls_for_execution: |
|
if call['name'] == 'check_drug_interactions': |
|
if 'args' not in call: call['args'] = {}; call['args']['current_medications'] = patient_meds_full; call['args']['allergies'] = patient_allergies; print(f"Augmented interaction check args for call ID {call['id']}"); |
|
if valid_tool_calls_for_execution: print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}"); |
|
try: responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True); |
|
for call, resp in zip(valid_tool_calls_for_execution, responses): tool_call_id = call['id']; tool_name = call['name']; |
|
if isinstance(resp, Exception): error_type = type(resp).__name__; error_str = str(resp); print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}"); traceback.print_exc(); st.error(f"Error: {error_type}"); error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}); tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name)); |
|
if isinstance(resp, AttributeError) and "'dict' object has no attribute 'tool'" in error_str: print("\n *** DETECTED SPECIFIC ATTRIBUTE ERROR *** \n"); |
|
else: print(f"Tool '{tool_name}' executed."); content_str = str(resp); tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name)); |
|
except Exception as e: print(f"CRITICAL TOOL NODE ERROR: {e}"); traceback.print_exc(); st.error(f"Critical error: {e}"); error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}); processed_ids = {msg.tool_call_id for msg in tool_messages}; [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) for call in valid_tool_calls_for_execution if call['id'] not in processed_ids]; |
|
print(f"Returning {len(tool_messages)} tool messages."); return {"messages": tool_messages} |
|
|
|
|
|
def should_continue(state: AgentState) -> str: |
|
print("\n---ROUTING DECISION---"); last_message = state['messages'][-1] if state['messages'] else None; |
|
if not isinstance(last_message, AIMessage): return "end_conversation_turn"; |
|
if "Sorry, an internal error occurred" in last_message.content: return "end_conversation_turn"; |
|
if getattr(last_message, 'tool_calls', None): return "continue_tools"; else: return "end_conversation_turn"; |
|
|
|
|
|
workflow = StateGraph(AgentState); workflow.add_node("agent", agent_node); workflow.add_node("tools", tool_node) |
|
workflow.set_entry_point("agent"); workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END}) |
|
workflow.add_edge("tools", "agent"); app = workflow.compile(); print("LangGraph compiled successfully.") |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT) |
|
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}") |
|
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}") |
|
if "messages" not in st.session_state: st.session_state.messages = [] |
|
if "patient_data" not in st.session_state: st.session_state.patient_data = None |
|
if "graph_app" not in st.session_state: st.session_state.graph_app = app |
|
|
|
|
|
with st.sidebar: |
|
st.header("π Patient Intake Form") |
|
|
|
st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55); sex = st.selectbox("Sex", ["Male", "Female", "Other"]) |
|
st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness"], default=["Nausea", "Diaphoresis"]) |
|
st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI"); psh = st.text_area("PSH", "Appendectomy") |
|
st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID"); allergies_str = st.text_area("Allergies", "Penicillin (rash)") |
|
st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker"); family_history = st.text_area("FHx", "Father MI") |
|
st.subheader("Vitals & Exam"); col1, col2 = st.columns(2); |
|
with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f"); hr_bpm = st.number_input("HR", 30, 250, 95); rr_rpm = st.number_input("RR", 5, 50, 18) |
|
with col2: bp_mmhg = st.text_input("BP", "155/90"); spo2_percent = st.number_input("SpO2", 70, 100, 96); pain_scale = st.slider("Pain", 0, 10, 8) |
|
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50) |
|
|
|
if st.button("Start/Update Consultation"): |
|
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()] |
|
current_med_names_only = []; |
|
for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", med); |
|
if match: current_med_names_only.append(match.group(1).lower()) |
|
allergies_list = [] |
|
for a in allergies_str.split(','): cleaned_allergy = a.strip(); |
|
if cleaned_allergy: match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy); name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower(); allergies_list.append(name_part) |
|
st.session_state.patient_data = { "demographics": {"age": age, "sex": sex}, "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, "pmh": {"conditions": pmh}, "psh": {"procedures": psh}, "medications": {"current": current_meds_list, "names_only": current_med_names_only}, "allergies": allergies_list, "social_history": {"details": social_history}, "family_history": {"details": family_history}, "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale}, "exam_findings": {"notes": exam_notes} } |
|
red_flags = check_red_flags(st.session_state.patient_data); st.sidebar.markdown("---"); |
|
if red_flags: st.sidebar.warning("**Initial Red Flags:**"); [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags] |
|
else: st.sidebar.success("No immediate red flags.") |
|
initial_prompt = "Initiate consultation. Review patient data and begin analysis." |
|
st.session_state.messages = [HumanMessage(content=initial_prompt)]; st.success("Patient data loaded/updated.") |
|
|
|
|
|
st.header("π¬ Clinical Consultation") |
|
|
|
for msg in st.session_state.messages: |
|
if isinstance(msg, HumanMessage): |
|
with st.chat_message("user"): st.markdown(msg.content) |
|
elif isinstance(msg, AIMessage): |
|
with st.chat_message("assistant"): |
|
ai_content = msg.content; structured_output = None |
|
try: |
|
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE) |
|
if json_match: json_str = json_match.group(1); prefix = ai_content[:json_match.start()].strip(); suffix = ai_content[json_match.end():].strip(); |
|
if prefix: st.markdown(prefix); structured_output = json.loads(json_str); |
|
if suffix: st.markdown(suffix) |
|
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = "" |
|
else: st.markdown(ai_content) |
|
except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}") |
|
if structured_output and isinstance(structured_output, dict): |
|
st.divider(); st.subheader("π AI Analysis & Recommendations") |
|
cols = st.columns(2); |
|
with cols[0]: st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}"); st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []); |
|
if ddx: [st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx] |
|
else: st.info("No DDx provided."); st.markdown("**Risk Assessment:**"); risk = structured_output.get('risk_assessment', {}); flags=risk.get('identified_red_flags',[]); concerns=risk.get("immediate_concerns",[]); comps=risk.get("potential_complications",[]) |
|
if flags: st.warning(f"**Flags:** {', '.join(flags)}"); if concerns: st.warning(f"**Concerns:** {', '.join(concerns)}"); if comps: st.info(f"**Potential Complications:** {', '.join(comps)}"); |
|
if not flags and not concerns: st.success("No major risks highlighted.") |
|
with cols[1]: st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {}); |
|
for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("") |
|
st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}"); interaction_summary = structured_output.get("interaction_check_summary", ""); |
|
if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}"); st.divider() |
|
|
|
|
|
if getattr(msg, 'tool_calls', None): |
|
with st.expander("π οΈ AI requested actions", expanded=False): |
|
if msg.tool_calls: |
|
for tc in msg.tool_calls: |
|
try: |
|
|
|
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json") |
|
except Exception as display_e: |
|
|
|
st.error(f"Could not display tool call arguments properly: {display_e}", icon="β οΈ") |
|
|
|
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}") |
|
else: |
|
st.caption("_No actions requested in this turn._") |
|
elif isinstance(msg, ToolMessage): |
|
tool_name_display = getattr(msg, 'name', 'tool_execution') |
|
with st.chat_message(tool_name_display, avatar="π οΈ"): |
|
try: |
|
tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings"); |
|
if status == "success" or status == "clear" or status == "flagged": st.success(f"{message}", icon="β
" if status != "flagged" else "π¨") |
|
elif status == "warning": st.warning(f"{message}", icon="β οΈ"); |
|
if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings] |
|
else: st.error(f"{message}", icon="β") |
|
if details: st.caption(f"Details: {details}") |
|
except json.JSONDecodeError: st.info(f"{msg.content}") |
|
except Exception as e: st.error(f"Error displaying tool message: {e}", icon="β"); st.caption(f"Raw content: {msg.content}") |
|
|
|
|
|
if prompt := st.chat_input("Your message or follow-up query..."): |
|
if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop() |
|
user_message = HumanMessage(content=prompt); st.session_state.messages.append(user_message) |
|
with st.chat_message("user"): st.markdown(prompt) |
|
current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data) |
|
with st.spinner("SynapseAI is thinking..."): |
|
try: |
|
final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15}) |
|
st.session_state.messages = final_state['messages'] |
|
except Exception as e: print(f"CRITICAL ERROR: {e}"); traceback.print_exc(); st.error(f"Error: {e}") |
|
st.rerun() |
|
|
|
|
|
st.markdown("---"); st.warning("**Disclaimer:** SynapseAI is for demonstration...") |
|
|
|
if __name__ == "__main__": |
|
main() |