Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# Import agent logic and message types
|
9 |
+
from agent import ClinicalAgent, AgentState, check_red_flags # Import necessary components
|
10 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
11 |
+
|
12 |
+
# --- Environment Variable Loading & Validation ---
|
13 |
+
load_dotenv()
|
14 |
+
# Check keys required by agent.py are present before initializing the agent
|
15 |
+
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
|
16 |
+
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
17 |
+
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
|
18 |
+
missing_keys = []
|
19 |
+
if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
|
20 |
+
if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
|
21 |
+
if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
|
22 |
+
if missing_keys:
|
23 |
+
st.error(f"Missing required API Key(s): {', '.join(missing_keys)}. Please set them in Hugging Face Space Secrets or environment variables.")
|
24 |
+
st.stop()
|
25 |
+
|
26 |
+
# --- App Configuration ---
|
27 |
+
class ClinicalAppSettings:
|
28 |
+
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
|
29 |
+
PAGE_LAYOUT = "wide"
|
30 |
+
# Model name is now primarily defined in agent.py, but can keep for display
|
31 |
+
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)"
|
32 |
+
|
33 |
+
|
34 |
+
# --- Streamlit UI ---
|
35 |
+
def main():
|
36 |
+
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
|
37 |
+
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
|
38 |
+
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
|
39 |
+
|
40 |
+
# Initialize session state
|
41 |
+
if "messages" not in st.session_state: st.session_state.messages = []
|
42 |
+
if "patient_data" not in st.session_state: st.session_state.patient_data = None
|
43 |
+
# Summary state for future memory enhancement
|
44 |
+
if "summary" not in st.session_state: st.session_state.summary = None
|
45 |
+
# Initialize the agent instance only once
|
46 |
+
if "agent" not in st.session_state:
|
47 |
+
try:
|
48 |
+
st.session_state.agent = ClinicalAgent()
|
49 |
+
print("ClinicalAgent successfully initialized in Streamlit session state.")
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
|
52 |
+
print(f"ERROR Initializing ClinicalAgent: {e}")
|
53 |
+
traceback.print_exc()
|
54 |
+
st.stop()
|
55 |
+
|
56 |
+
|
57 |
+
# --- Patient Data Input Sidebar ---
|
58 |
+
with st.sidebar:
|
59 |
+
st.header("π Patient Intake Form")
|
60 |
+
# Input fields... (Assume full fields as before)
|
61 |
+
st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
|
62 |
+
st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
|
63 |
+
st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
|
64 |
+
st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
|
65 |
+
st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
|
66 |
+
st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
|
67 |
+
with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
|
68 |
+
with col2: bp_mmhg = st.text_input("BP", "155/90", key="sb_bp"); spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2"); pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
|
69 |
+
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50, key="sb_exam")
|
70 |
+
|
71 |
+
if st.button("Start/Update Consultation", key="sb_start"):
|
72 |
+
# Compile data...
|
73 |
+
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
|
74 |
+
current_med_names_only = [];
|
75 |
+
for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", med);
|
76 |
+
if match: current_med_names_only.append(match.group(1).lower())
|
77 |
+
allergies_list = []
|
78 |
+
for a in allergies_str.split(','): cleaned_allergy = a.strip();
|
79 |
+
if cleaned_allergy: match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy); name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower(); allergies_list.append(name_part)
|
80 |
+
# Update patient data in session state
|
81 |
+
st.session_state.patient_data = { "demographics": {"age": age, "sex": sex}, "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, "pmh": {"conditions": pmh}, "psh": {"procedures": psh}, "medications": {"current": current_meds_list, "names_only": current_med_names_only}, "allergies": allergies_list, "social_history": {"details": social_history}, "family_history": {"details": family_history}, "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale}, "exam_findings": {"notes": exam_notes} }
|
82 |
+
# Call check_red_flags from agent module
|
83 |
+
red_flags = check_red_flags(st.session_state.patient_data); st.sidebar.markdown("---");
|
84 |
+
if red_flags: st.sidebar.warning("**Initial Red Flags:**"); [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
|
85 |
+
else: st.sidebar.success("No immediate red flags.")
|
86 |
+
# Reset conversation and summary on new intake
|
87 |
+
initial_prompt = "Initiate consultation. Review patient data and begin analysis."
|
88 |
+
st.session_state.messages = [HumanMessage(content=initial_prompt)]
|
89 |
+
st.session_state.summary = None # Reset summary
|
90 |
+
st.success("Patient data loaded/updated.")
|
91 |
+
# Rerun might be needed if the main area should clear or update based on new data
|
92 |
+
st.rerun()
|
93 |
+
|
94 |
+
# --- Main Chat Interface Area ---
|
95 |
+
st.header("π¬ Clinical Consultation")
|
96 |
+
# Display loop - Uses messages from st.session_state
|
97 |
+
for msg in st.session_state.messages: # Removed enumerate and key
|
98 |
+
if isinstance(msg, HumanMessage):
|
99 |
+
with st.chat_message("user"): st.markdown(msg.content)
|
100 |
+
elif isinstance(msg, AIMessage):
|
101 |
+
with st.chat_message("assistant"):
|
102 |
+
# ... (Keep the detailed AI message display logic, including JSON parsing) ...
|
103 |
+
ai_content = msg.content; structured_output = None
|
104 |
+
try: # JSON Parsing logic...
|
105 |
+
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
|
106 |
+
if json_match: json_str = json_match.group(1); prefix = ai_content[:json_match.start()].strip(); suffix = ai_content[json_match.end():].strip();
|
107 |
+
if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
|
108 |
+
if suffix: st.markdown(suffix)
|
109 |
+
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
|
110 |
+
else: st.markdown(ai_content) # Display non-JSON content
|
111 |
+
except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
|
112 |
+
if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
|
113 |
+
st.divider(); st.subheader("π AI Analysis & Recommendations")
|
114 |
+
# ... (Keep detailed JSON display logic for assessment, ddx, plan, etc.) ...
|
115 |
+
cols = st.columns(2);
|
116 |
+
with cols[0]: st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}"); st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []);
|
117 |
+
if ddx: [st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
|
118 |
+
else: st.info("No DDx provided."); st.markdown("**Risk Assessment:**"); risk = structured_output.get('risk_assessment', {}); flags=risk.get('identified_red_flags',[]); concerns=risk.get("immediate_concerns",[]); comps=risk.get("potential_complications",[])
|
119 |
+
if flags: st.warning(f"**Flags:** {', '.join(flags)}"); if concerns: st.warning(f"**Concerns:** {', '.join(concerns)}"); if comps: st.info(f"**Potential Complications:** {', '.join(comps)}");
|
120 |
+
if not flags and not concerns: st.success("No major risks highlighted.")
|
121 |
+
with cols[1]: st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {});
|
122 |
+
for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("")
|
123 |
+
st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}"); interaction_summary = structured_output.get("interaction_check_summary", "");
|
124 |
+
if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}"); st.divider()
|
125 |
+
|
126 |
+
# Tool Call Display
|
127 |
+
if getattr(msg, 'tool_calls', None):
|
128 |
+
with st.expander("π οΈ AI requested actions", expanded=False):
|
129 |
+
if msg.tool_calls:
|
130 |
+
for tc in msg.tool_calls:
|
131 |
+
try: st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
|
132 |
+
except Exception as display_e: st.error(f"Could not display tool call args: {display_e}", icon="β οΈ"); st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
|
133 |
+
else: st.caption("_No actions requested._")
|
134 |
+
elif isinstance(msg, ToolMessage):
|
135 |
+
tool_name_display = getattr(msg, 'name', 'tool_execution')
|
136 |
+
with st.chat_message(tool_name_display, avatar="π οΈ"):
|
137 |
+
# ... (Keep ToolMessage display logic) ...
|
138 |
+
try:
|
139 |
+
tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
|
140 |
+
if status == "success" or status == "clear" or status == "flagged": st.success(f"{message}", icon="β
" if status != "flagged" else "π¨")
|
141 |
+
elif status == "warning": st.warning(f"{message}", icon="β οΈ");
|
142 |
+
if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
|
143 |
+
else: st.error(f"{message}", icon="β") # Assume error if not known status
|
144 |
+
if details: st.caption(f"Details: {details}")
|
145 |
+
except json.JSONDecodeError: st.info(f"{msg.content}") # Display raw if not JSON
|
146 |
+
except Exception as e: st.error(f"Error displaying tool message: {e}", icon="β"); st.caption(f"Raw content: {msg.content}")
|
147 |
+
|
148 |
+
|
149 |
+
# --- Chat Input Logic ---
|
150 |
+
if prompt := st.chat_input("Your message or follow-up query..."):
|
151 |
+
if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
|
152 |
+
if not st.session_state.agent: st.error("Agent not initialized. Check logs."); st.stop() # Add check for agent
|
153 |
+
|
154 |
+
# Append user message and display immediately
|
155 |
+
user_message = HumanMessage(content=prompt)
|
156 |
+
st.session_state.messages.append(user_message)
|
157 |
+
with st.chat_message("user"): st.markdown(prompt)
|
158 |
+
|
159 |
+
# Prepare state for the agent, including existing messages and patient data
|
160 |
+
current_state_dict = {
|
161 |
+
"messages": st.session_state.messages,
|
162 |
+
"patient_data": st.session_state.patient_data,
|
163 |
+
"summary": st.session_state.get("summary"), # Include summary if implemented
|
164 |
+
"interaction_warnings": None # Always start turn with no pending warnings
|
165 |
+
}
|
166 |
+
|
167 |
+
# Invoke the agent's graph for one turn
|
168 |
+
with st.spinner("SynapseAI is thinking..."):
|
169 |
+
try:
|
170 |
+
# Call the agent instance's method
|
171 |
+
final_state = st.session_state.agent.invoke_turn(current_state_dict)
|
172 |
+
|
173 |
+
# Update Streamlit session state from the returned agent state
|
174 |
+
st.session_state.messages = final_state.get('messages', [])
|
175 |
+
st.session_state.summary = final_state.get('summary') # Update summary if implemented
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
print(f"CRITICAL ERROR during agent invocation: {type(e).__name__} - {e}")
|
179 |
+
traceback.print_exc()
|
180 |
+
st.error(f"An error occurred during processing: {e}", icon="β")
|
181 |
+
# Optionally append an error message to the chat display
|
182 |
+
# st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}"))
|
183 |
+
|
184 |
+
# Rerun Streamlit script to update the chat display
|
185 |
+
st.rerun()
|
186 |
+
|
187 |
+
# Disclaimer
|
188 |
+
st.markdown("---"); st.warning("**Disclaimer:** SynapseAI is for demonstration...")
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
main()
|