Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,9 @@ import os
|
|
6 |
import traceback
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
-
# Import agent logic and message types
|
10 |
try:
|
11 |
-
from agent import ClinicalAgent, AgentState, check_red_flags
|
12 |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
13 |
except ImportError as e:
|
14 |
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
|
@@ -46,26 +46,22 @@ def main():
|
|
46 |
if "messages" not in st.session_state: st.session_state.messages = []
|
47 |
if "patient_data" not in st.session_state: st.session_state.patient_data = None
|
48 |
if "summary" not in st.session_state: st.session_state.summary = None
|
49 |
-
# Initialize the agent instance only once
|
50 |
if "agent" not in st.session_state:
|
51 |
try:
|
52 |
st.session_state.agent = ClinicalAgent()
|
53 |
print("ClinicalAgent successfully initialized in Streamlit session state.")
|
54 |
except Exception as e:
|
55 |
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
|
56 |
-
print(f"ERROR Initializing ClinicalAgent: {e}")
|
57 |
-
traceback.print_exc()
|
58 |
-
st.stop()
|
59 |
-
|
60 |
|
61 |
# --- Patient Data Input Sidebar ---
|
62 |
with st.sidebar:
|
63 |
st.header("π Patient Intake Form")
|
64 |
-
# Input fields... (
|
65 |
st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
|
66 |
st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
|
67 |
st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
|
68 |
-
st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
|
69 |
st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
|
70 |
st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
|
71 |
with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
|
@@ -92,7 +88,6 @@ def main():
|
|
92 |
st.session_state.messages = [HumanMessage(content=initial_prompt)]
|
93 |
st.session_state.summary = None # Reset summary
|
94 |
st.success("Patient data loaded/updated.")
|
95 |
-
# Rerun might be needed if the main area should clear or update based on new data
|
96 |
st.rerun()
|
97 |
|
98 |
# --- Main Chat Interface Area ---
|
@@ -110,20 +105,44 @@ def main():
|
|
110 |
if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
|
111 |
if suffix: st.markdown(suffix)
|
112 |
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
|
113 |
-
else: st.markdown(ai_content)
|
114 |
except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
|
|
|
115 |
if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
|
116 |
st.divider(); st.subheader("π AI Analysis & Recommendations")
|
117 |
cols = st.columns(2);
|
118 |
-
with cols[0]:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Tool Call Display
|
129 |
if getattr(msg, 'tool_calls', None):
|
@@ -138,9 +157,7 @@ def main():
|
|
138 |
with st.chat_message(tool_name_display, avatar="π οΈ"):
|
139 |
try: # Tool message display logic...
|
140 |
tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
|
141 |
-
|
142 |
-
if tool_name_display == "flag_risk" and status == "flagged":
|
143 |
-
st.error(f"π¨ **RISK FLAGGED:** {message}", icon="π¨") # Show flag in UI too
|
144 |
elif status == "success" or status == "clear": st.success(f"{message}", icon="β
")
|
145 |
elif status == "warning": st.warning(f"{message}", icon="β οΈ");
|
146 |
if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
|
@@ -154,37 +171,15 @@ def main():
|
|
154 |
if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
|
155 |
if 'agent' not in st.session_state or not st.session_state.agent: st.error("Agent not initialized. Check logs."); st.stop()
|
156 |
|
157 |
-
|
158 |
-
user_message = HumanMessage(content=prompt)
|
159 |
-
st.session_state.messages.append(user_message)
|
160 |
with st.chat_message("user"): st.markdown(prompt)
|
161 |
-
|
162 |
-
# Prepare state for the agent
|
163 |
-
current_state_dict = {
|
164 |
-
"messages": st.session_state.messages,
|
165 |
-
"patient_data": st.session_state.patient_data,
|
166 |
-
"summary": st.session_state.get("summary"),
|
167 |
-
"interaction_warnings": None # Start clean
|
168 |
-
}
|
169 |
-
|
170 |
-
# Invoke the agent's graph for one turn
|
171 |
with st.spinner("SynapseAI is processing..."):
|
172 |
try:
|
173 |
-
# Call the agent instance's method
|
174 |
final_state = st.session_state.agent.invoke_turn(current_state_dict)
|
175 |
-
|
176 |
-
# Update Streamlit session state from the returned agent state
|
177 |
st.session_state.messages = final_state.get('messages', [])
|
178 |
st.session_state.summary = final_state.get('summary')
|
179 |
-
|
180 |
-
except Exception as e:
|
181 |
-
print(f"CRITICAL ERROR during agent invocation: {type(e).__name__} - {e}")
|
182 |
-
traceback.print_exc()
|
183 |
-
st.error(f"An error occurred during processing: {e}", icon="β")
|
184 |
-
# Append error to messages for user visibility
|
185 |
-
st.session_state.messages.append(AIMessage(content=f"Error during processing: {e}"))
|
186 |
-
|
187 |
-
# Rerun Streamlit script to update the chat display
|
188 |
st.rerun()
|
189 |
|
190 |
# Disclaimer
|
|
|
6 |
import traceback
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
+
# Import agent logic and message types
|
10 |
try:
|
11 |
+
from agent import ClinicalAgent, AgentState, check_red_flags # Import necessary components
|
12 |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
13 |
except ImportError as e:
|
14 |
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
|
|
|
46 |
if "messages" not in st.session_state: st.session_state.messages = []
|
47 |
if "patient_data" not in st.session_state: st.session_state.patient_data = None
|
48 |
if "summary" not in st.session_state: st.session_state.summary = None
|
|
|
49 |
if "agent" not in st.session_state:
|
50 |
try:
|
51 |
st.session_state.agent = ClinicalAgent()
|
52 |
print("ClinicalAgent successfully initialized in Streamlit session state.")
|
53 |
except Exception as e:
|
54 |
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
|
55 |
+
print(f"ERROR Initializing ClinicalAgent: {e}"); traceback.print_exc(); st.stop()
|
|
|
|
|
|
|
56 |
|
57 |
# --- Patient Data Input Sidebar ---
|
58 |
with st.sidebar:
|
59 |
st.header("π Patient Intake Form")
|
60 |
+
# Input fields... (Assume full fields as before)
|
61 |
st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
|
62 |
st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
|
63 |
st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
|
64 |
+
st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
|
65 |
st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
|
66 |
st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
|
67 |
with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
|
|
|
88 |
st.session_state.messages = [HumanMessage(content=initial_prompt)]
|
89 |
st.session_state.summary = None # Reset summary
|
90 |
st.success("Patient data loaded/updated.")
|
|
|
91 |
st.rerun()
|
92 |
|
93 |
# --- Main Chat Interface Area ---
|
|
|
105 |
if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
|
106 |
if suffix: st.markdown(suffix)
|
107 |
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
|
108 |
+
else: st.markdown(ai_content)
|
109 |
except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
|
110 |
+
|
111 |
if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
|
112 |
st.divider(); st.subheader("π AI Analysis & Recommendations")
|
113 |
cols = st.columns(2);
|
114 |
+
with cols[0]: # Assessment, DDx, Risk
|
115 |
+
st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
|
116 |
+
st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []);
|
117 |
+
if ddx: [st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
|
118 |
+
else: st.info("No DDx provided.")
|
119 |
+
|
120 |
+
# Risk Assessment Display (CORRECTED - Separate lines)
|
121 |
+
st.markdown(f"**Risk Assessment:**")
|
122 |
+
risk = structured_output.get('risk_assessment', {})
|
123 |
+
flags = risk.get('identified_red_flags', [])
|
124 |
+
concerns = risk.get("immediate_concerns", [])
|
125 |
+
comps = risk.get("potential_complications", [])
|
126 |
+
|
127 |
+
if flags:
|
128 |
+
st.warning(f"**Flags:** {', '.join(flags)}")
|
129 |
+
if concerns:
|
130 |
+
st.warning(f"**Concerns:** {', '.join(concerns)}")
|
131 |
+
if comps:
|
132 |
+
st.info(f"**Potential Complications:** {', '.join(comps)}")
|
133 |
+
# Add a message if no risks were highlighted by the AI assessment
|
134 |
+
if not flags and not concerns and not comps:
|
135 |
+
st.success("No specific risks highlighted in this AI assessment.")
|
136 |
+
|
137 |
+
with cols[1]: # Plan
|
138 |
+
st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {});
|
139 |
+
for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("")
|
140 |
+
|
141 |
+
# Rationale & Interaction Summary
|
142 |
+
st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
|
143 |
+
interaction_summary = structured_output.get("interaction_check_summary", "");
|
144 |
+
if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}");
|
145 |
+
st.divider()
|
146 |
|
147 |
# Tool Call Display
|
148 |
if getattr(msg, 'tool_calls', None):
|
|
|
157 |
with st.chat_message(tool_name_display, avatar="π οΈ"):
|
158 |
try: # Tool message display logic...
|
159 |
tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
|
160 |
+
if tool_name_display == "flag_risk" and status == "flagged": st.error(f"π¨ **RISK FLAGGED:** {message}", icon="π¨") # Show flag in UI too
|
|
|
|
|
161 |
elif status == "success" or status == "clear": st.success(f"{message}", icon="β
")
|
162 |
elif status == "warning": st.warning(f"{message}", icon="β οΈ");
|
163 |
if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
|
|
|
171 |
if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
|
172 |
if 'agent' not in st.session_state or not st.session_state.agent: st.error("Agent not initialized. Check logs."); st.stop()
|
173 |
|
174 |
+
user_message = HumanMessage(content=prompt); st.session_state.messages.append(user_message)
|
|
|
|
|
175 |
with st.chat_message("user"): st.markdown(prompt)
|
176 |
+
current_state_dict = {"messages": st.session_state.messages, "patient_data": st.session_state.patient_data, "summary": st.session_state.get("summary"), "interaction_warnings": None}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
with st.spinner("SynapseAI is processing..."):
|
178 |
try:
|
|
|
179 |
final_state = st.session_state.agent.invoke_turn(current_state_dict)
|
|
|
|
|
180 |
st.session_state.messages = final_state.get('messages', [])
|
181 |
st.session_state.summary = final_state.get('summary')
|
182 |
+
except Exception as e: print(f"CRITICAL ERROR: {e}"); traceback.print_exc(); st.error(f"Error: {e}"); st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
st.rerun()
|
184 |
|
185 |
# Disclaimer
|