Update agent.py
Browse files
agent.py
CHANGED
@@ -25,473 +25,239 @@ GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
25 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
26 |
|
27 |
if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
|
28 |
-
logger.error("Missing
|
29 |
-
raise RuntimeError("Missing
|
30 |
|
31 |
# ββ Agent Configuration ββββββββββββββββββββββββββββββββββββββββββββββ
|
32 |
-
AGENT_MODEL_NAME = "llama3-70b-8192"
|
33 |
-
AGENT_TEMPERATURE = 0.1
|
34 |
-
MAX_SEARCH_RESULTS = 3
|
35 |
-
|
36 |
class ClinicalPrompts:
|
37 |
SYSTEM_PROMPT = """
|
38 |
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation...
|
39 |
[SYSTEM PROMPT CONTENT HERE]
|
40 |
"""
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
Ensures that the given message is an AIMessage.
|
46 |
-
If it is a dict, it extracts the 'content' field (or serializes the dict).
|
47 |
-
Otherwise, it converts the message to a string.
|
48 |
-
"""
|
49 |
-
if isinstance(msg, AIMessage):
|
50 |
-
return msg
|
51 |
-
elif isinstance(msg, dict):
|
52 |
-
return AIMessage(content=msg.get("content", json.dumps(msg)))
|
53 |
-
else:
|
54 |
-
return AIMessage(content=str(msg))
|
55 |
-
|
56 |
-
# ββ Helper Functions βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
57 |
-
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
|
58 |
-
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
|
59 |
-
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
|
60 |
-
|
61 |
-
@lru_cache(maxsize=256)
|
62 |
-
def get_rxcui(drug_name: str) -> Optional[str]:
|
63 |
-
"""Lookup RxNorm CUI for a given drug name."""
|
64 |
-
drug_name = (drug_name or "").strip()
|
65 |
-
if not drug_name:
|
66 |
-
return None
|
67 |
-
logger.info(f"Looking up RxCUI for '{drug_name}'")
|
68 |
-
try:
|
69 |
-
params = {"name": drug_name, "search": 1}
|
70 |
-
r = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
|
71 |
-
r.raise_for_status()
|
72 |
-
ids = r.json().get("idGroup", {}).get("rxnormId")
|
73 |
-
if ids:
|
74 |
-
logger.info(f"Found RxCUI {ids[0]} for '{drug_name}'")
|
75 |
-
return ids[0]
|
76 |
-
r = requests.get(f"{RXNORM_API_BASE}/drugs.json", params={"name": drug_name}, timeout=10)
|
77 |
-
r.raise_for_status()
|
78 |
-
for grp in r.json().get("drugGroup", {}).get("conceptGroup", []):
|
79 |
-
props = grp.get("conceptProperties")
|
80 |
-
if props:
|
81 |
-
logger.info(f"Found RxCUI {props[0]['rxcui']} via /drugs for '{drug_name}'")
|
82 |
-
return props[0]["rxcui"]
|
83 |
-
except Exception:
|
84 |
-
logger.exception(f"Error fetching RxCUI for '{drug_name}'")
|
85 |
-
return None
|
86 |
-
|
87 |
-
@lru_cache(maxsize=128)
|
88 |
-
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[Dict[str, Any]]:
|
89 |
-
"""Fetch the OpenFDA label for a drug by RxCUI or name."""
|
90 |
-
if not (rxcui or drug_name):
|
91 |
-
return None
|
92 |
-
terms = []
|
93 |
-
if rxcui:
|
94 |
-
terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
|
95 |
-
if drug_name:
|
96 |
-
dn = drug_name.lower()
|
97 |
-
terms.append(f'(openfda.brand_name:"{dn}" OR openfda.generic_name:"{dn}")')
|
98 |
-
query = " OR ".join(terms)
|
99 |
-
logger.info(f"Looking up OpenFDA label with query: {query}")
|
100 |
-
try:
|
101 |
-
r = requests.get(OPENFDA_API_BASE, params={"search": query, "limit": 1}, timeout=15)
|
102 |
-
r.raise_for_status()
|
103 |
-
results = r.json().get("results", [])
|
104 |
-
if results:
|
105 |
-
return results[0]
|
106 |
-
except Exception:
|
107 |
-
logger.exception("Error fetching OpenFDA label")
|
108 |
-
return None
|
109 |
-
|
110 |
-
def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
|
111 |
-
"""Return highlighted snippets from a list of texts containing any of the search terms."""
|
112 |
-
snippets = []
|
113 |
-
lowers = [t.lower() for t in terms if t]
|
114 |
-
for text in texts or []:
|
115 |
-
tl = text.lower()
|
116 |
-
for term in lowers:
|
117 |
-
if term in tl:
|
118 |
-
i = tl.find(term)
|
119 |
-
start = max(0, i - 50)
|
120 |
-
end = min(len(text), i + len(term) + 100)
|
121 |
-
snippet = text[start:end]
|
122 |
-
snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, flags=re.IGNORECASE)
|
123 |
-
snippets.append(f"...{snippet}...")
|
124 |
-
break
|
125 |
-
return snippets
|
126 |
-
|
127 |
-
def parse_bp(bp: str) -> Optional[tuple[int, int]]:
|
128 |
-
"""Parse 'SYS/DIA' blood pressure string into a (sys, dia) tuple."""
|
129 |
-
if m := re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", (bp or "").strip()):
|
130 |
-
return int(m.group(1)), int(m.group(2))
|
131 |
-
return None
|
132 |
-
|
133 |
-
def check_red_flags(patient_data: Dict[str, Any]) -> List[str]:
|
134 |
-
"""Identify immediate red flags from patient_data."""
|
135 |
-
flags: List[str] = []
|
136 |
-
hpi = patient_data.get("hpi", {})
|
137 |
-
vitals = patient_data.get("vitals", {})
|
138 |
-
syms = [s.lower() for s in hpi.get("symptoms", []) if isinstance(s, str)]
|
139 |
-
mapping = {
|
140 |
-
"chest pain": "Chest pain reported",
|
141 |
-
"shortness of breath": "Shortness of breath reported",
|
142 |
-
"severe headache": "Severe headache reported",
|
143 |
-
"syncope": "Syncope reported",
|
144 |
-
"hemoptysis": "Hemoptysis reported"
|
145 |
-
}
|
146 |
-
for term, desc in mapping.items():
|
147 |
-
if term in syms:
|
148 |
-
flags.append(f"Red Flag: {desc}.")
|
149 |
-
temp = vitals.get("temp_c")
|
150 |
-
hr = vitals.get("hr_bpm")
|
151 |
-
rr = vitals.get("rr_rpm")
|
152 |
-
spo2 = vitals.get("spo2_percent")
|
153 |
-
bp = parse_bp(vitals.get("bp_mmhg", ""))
|
154 |
-
if temp is not None and temp >= 38.5:
|
155 |
-
flags.append(f"Red Flag: Fever ({temp}Β°C).")
|
156 |
-
if hr is not None:
|
157 |
-
if hr >= 120:
|
158 |
-
flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
|
159 |
-
if hr <= 50:
|
160 |
-
flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
|
161 |
-
if rr is not None and rr >= 24:
|
162 |
-
flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
|
163 |
-
if spo2 is not None and spo2 <= 92:
|
164 |
-
flags.append(f"Red Flag: Hypoxia ({spo2}%).")
|
165 |
-
if bp:
|
166 |
-
sys, dia = bp
|
167 |
-
if sys >= 180 or dia >= 110:
|
168 |
-
flags.append(f"Red Flag: Hypertensive urgency/emergency ({sys}/{dia} mmHg).")
|
169 |
-
if sys <= 90 or dia <= 60:
|
170 |
-
flags.append(f"Red Flag: Hypotension ({sys}/{dia} mmHg).")
|
171 |
-
return list(dict.fromkeys(flags))
|
172 |
-
|
173 |
-
def format_patient_data_for_prompt(data: Dict[str, Any]) -> str:
|
174 |
-
"""Format patient_data dict into a markdown-like prompt section."""
|
175 |
-
if not data:
|
176 |
-
return "No patient data provided."
|
177 |
-
lines: List[str] = []
|
178 |
-
for section, value in data.items():
|
179 |
-
title = section.replace("_", " ").title()
|
180 |
-
if isinstance(value, dict) and any(value.values()):
|
181 |
-
lines.append(f"**{title}:**")
|
182 |
-
for k, v in value.items():
|
183 |
-
if v:
|
184 |
-
lines.append(f"- {k.replace('_',' ').title()}: {v}")
|
185 |
-
elif isinstance(value, list) and value:
|
186 |
-
lines.append(f"**{title}:** {', '.join(map(str, value))}")
|
187 |
-
elif value:
|
188 |
-
lines.append(f"**{title}:** {value}")
|
189 |
-
return "\n".join(lines)
|
190 |
-
|
191 |
-
# ββ Tool Input Schemas βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
192 |
-
class LabOrderInput(BaseModel):
|
193 |
-
test_name: str = Field(...)
|
194 |
-
reason: str = Field(...)
|
195 |
-
priority: str = Field("Routine")
|
196 |
-
|
197 |
-
class PrescriptionInput(BaseModel):
|
198 |
-
medication_name: str = Field(...)
|
199 |
-
dosage: str = Field(...)
|
200 |
-
route: str = Field(...)
|
201 |
-
frequency: str = Field(...)
|
202 |
-
duration: str = Field("As directed")
|
203 |
-
reason: str = Field(...)
|
204 |
-
|
205 |
-
class InteractionCheckInput(BaseModel):
|
206 |
-
potential_prescription: str
|
207 |
-
current_medications: Optional[List[str]] = Field(None)
|
208 |
-
allergies: Optional[List[str]] = Field(None)
|
209 |
-
|
210 |
-
class FlagRiskInput(BaseModel):
|
211 |
-
risk_description: str = Field(...)
|
212 |
-
urgency: str = Field("High")
|
213 |
-
|
214 |
-
# ββ Tool Implementations βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
215 |
-
@tool("order_lab_test", args_schema=LabOrderInput)
|
216 |
-
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
|
217 |
-
"""
|
218 |
-
Place an order for a laboratory test.
|
219 |
-
"""
|
220 |
-
logger.info(f"Ordering lab test: {test_name}, reason: {reason}, priority: {priority}")
|
221 |
-
return json.dumps({
|
222 |
-
"status": "success",
|
223 |
-
"message": f"Lab Ordered: {test_name} ({priority})",
|
224 |
-
"details": f"Reason: {reason}"
|
225 |
-
})
|
226 |
-
|
227 |
-
@tool("prescribe_medication", args_schema=PrescriptionInput)
|
228 |
-
def prescribe_medication(
|
229 |
-
medication_name: str,
|
230 |
-
dosage: str,
|
231 |
-
route: str,
|
232 |
-
frequency: str,
|
233 |
-
duration: str,
|
234 |
-
reason: str
|
235 |
-
) -> str:
|
236 |
-
"""
|
237 |
-
Prepare a medication prescription.
|
238 |
-
"""
|
239 |
-
logger.info(f"Preparing prescription: {medication_name} {dosage}, route: {route}, freq: {frequency}")
|
240 |
-
return json.dumps({
|
241 |
-
"status": "success",
|
242 |
-
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
|
243 |
-
"details": f"Duration: {duration}. Reason: {reason}"
|
244 |
-
})
|
245 |
|
246 |
-
|
247 |
-
def check_drug_interactions(
|
248 |
-
potential_prescription: str,
|
249 |
-
current_medications: Optional[List[str]] = None,
|
250 |
-
allergies: Optional[List[str]] = None
|
251 |
-
) -> str:
|
252 |
-
"""
|
253 |
-
Check for drugβdrug interactions and allergy risks.
|
254 |
-
"""
|
255 |
-
logger.info(f"Checking interactions for: {potential_prescription}")
|
256 |
-
warnings: List[str] = []
|
257 |
-
pm = [m.lower().strip() for m in (current_medications or []) if m]
|
258 |
-
al = [a.lower().strip() for a in (allergies or []) if a]
|
259 |
-
if potential_prescription.lower().strip() in al:
|
260 |
-
warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{potential_prescription}'.")
|
261 |
-
rxcui = get_rxcui(potential_prescription)
|
262 |
-
label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
|
263 |
-
if not (rxcui or label):
|
264 |
-
warnings.append(f"INFO: Could not identify '{potential_prescription}'. Checks may be incomplete.")
|
265 |
-
for section in ("contraindications", "warnings_and_cautions", "warnings"):
|
266 |
-
items = label.get(section) if label else None
|
267 |
-
if isinstance(items, list):
|
268 |
-
snippets = search_text_list(items, al)
|
269 |
-
if snippets:
|
270 |
-
warnings.append(f"ALLERGY RISK ({section}): {'; '.join(snippets)}")
|
271 |
-
for med in pm:
|
272 |
-
mrxcui = get_rxcui(med)
|
273 |
-
mlabel = get_openfda_label(rxcui=mrxcui, drug_name=med)
|
274 |
-
for sec in ("drug_interactions",):
|
275 |
-
for src_label, src_name in ((label, potential_prescription), (mlabel, med)):
|
276 |
-
items = src_label.get(sec) if src_label else None
|
277 |
-
if isinstance(items, list):
|
278 |
-
snippets = search_text_list(items, [med if src_name == potential_prescription else potential_prescription])
|
279 |
-
if snippets:
|
280 |
-
warnings.append(f"Interaction ({src_name} label): {'; '.join(snippets)}")
|
281 |
-
status = "warning" if warnings else "clear"
|
282 |
-
message = (
|
283 |
-
f"{len(warnings)} issue(s) found for '{potential_prescription}'."
|
284 |
-
if warnings else
|
285 |
-
f"No major interactions or allergy issues identified for '{potential_prescription}'."
|
286 |
-
)
|
287 |
-
return json.dumps({"status": status, "message": message, "warnings": warnings})
|
288 |
-
|
289 |
-
@tool("flag_risk", args_schema=FlagRiskInput)
|
290 |
-
def flag_risk(risk_description: str, urgency: str = "High") -> str:
|
291 |
-
"""
|
292 |
-
Flag a clinical risk with given urgency.
|
293 |
-
"""
|
294 |
-
logger.info(f"Flagging risk: {risk_description} (urgency={urgency})")
|
295 |
-
return json.dumps({
|
296 |
-
"status": "flagged",
|
297 |
-
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
|
298 |
-
})
|
299 |
-
|
300 |
-
# Include the Tavily search tool
|
301 |
-
search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
|
302 |
-
all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
|
303 |
-
|
304 |
-
# ββ LLM & Tool Executor βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
305 |
-
llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME)
|
306 |
-
model_with_tools = llm.bind_tools(all_tools)
|
307 |
-
tool_executor = ToolExecutor(all_tools)
|
308 |
-
|
309 |
-
# ββ State Definition βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
310 |
class AgentState(TypedDict):
|
311 |
messages: List[Any]
|
312 |
patient_data: Optional[Dict[str, Any]]
|
313 |
summary: Optional[str]
|
314 |
interaction_warnings: Optional[List[str]]
|
315 |
-
done:
|
316 |
-
iterations:
|
317 |
|
318 |
-
# Helper to propagate state fields between nodes
|
319 |
def propagate_state(new: Dict[str, Any], old: Dict[str, Any]) -> Dict[str, Any]:
|
320 |
-
|
321 |
-
|
322 |
-
new[key] = old[key]
|
323 |
-
return new
|
324 |
|
325 |
-
# ββ
|
326 |
def agent_node(state: AgentState) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
327 |
if state.get("done", False):
|
328 |
return state
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
try:
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
except Exception as e:
|
339 |
-
logger.
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
def tool_node(state: AgentState) -> Dict[str, Any]:
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
345 |
return state
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
warnings
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
if
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
if data.get("status") == "warning":
|
389 |
-
warnings.extend(data.get("warnings", []))
|
390 |
-
messages.append(ToolMessage(content=content, tool_call_id=call["id"], name=call["name"]))
|
391 |
-
except Exception as e:
|
392 |
-
logger.exception("Critical error in tool_node")
|
393 |
-
for call in to_execute:
|
394 |
-
messages.append(ToolMessage(
|
395 |
-
content=json.dumps({"status": "error", "message": str(e)}),
|
396 |
-
tool_call_id=call["id"],
|
397 |
-
name=call["name"]
|
398 |
-
))
|
399 |
-
new_state = {"messages": messages, "interaction_warnings": warnings or None}
|
400 |
-
return propagate_state(new_state, state)
|
401 |
-
|
402 |
def reflection_node(state: AgentState) -> Dict[str, Any]:
|
403 |
-
|
|
|
|
|
404 |
return state
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
for msg in reversed(state.get("messages", [])):
|
412 |
-
wrapped = wrap_message(msg)
|
413 |
-
if isinstance(wrapped, AIMessage) and wrapped.__dict__.get("tool_calls"):
|
414 |
-
triggering = wrapped
|
415 |
-
break
|
416 |
-
if not triggering:
|
417 |
-
new_state = {"messages": [AIMessage(content="Internal Error: reflection context missing.")]}
|
418 |
-
return propagate_state(new_state, state)
|
419 |
-
prompt = (
|
420 |
-
"You are SynapseAI, performing a focused safety review of the following plan:\n\n"
|
421 |
-
f"{triggering.content}\n\n"
|
422 |
-
"Highlight any issues based on these warnings:\n" +
|
423 |
-
"\n".join(f"- {w}" for w in warns)
|
424 |
-
)
|
425 |
try:
|
426 |
-
|
427 |
-
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
except Exception as e:
|
430 |
-
logger.
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
if state
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
return "end_conversation_turn"
|
446 |
-
last = wrap_message(state["messages"][-1])
|
447 |
-
if not isinstance(last, AIMessage):
|
448 |
-
state["done"] = True
|
449 |
-
return "end_conversation_turn"
|
450 |
-
if last.__dict__.get("tool_calls"):
|
451 |
-
return "continue_tools"
|
452 |
-
if "consultation complete" in last.content.lower():
|
453 |
-
state["done"] = True
|
454 |
-
return "end_conversation_turn"
|
455 |
-
state["done"] = False
|
456 |
-
return "agent"
|
457 |
-
|
458 |
-
def after_tools_router(state: AgentState) -> str:
|
459 |
if state.get("interaction_warnings"):
|
460 |
return "reflection"
|
461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
# ββ
|
464 |
class ClinicalAgent:
|
465 |
def __init__(self):
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
"
|
478 |
-
"
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
try:
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
except Exception as e:
|
491 |
-
logger.
|
492 |
return {
|
493 |
-
"
|
494 |
-
"
|
495 |
-
"
|
496 |
-
"interaction_warnings": None
|
497 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
26 |
|
27 |
if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
|
28 |
+
logger.error("Missing required API keys")
|
29 |
+
raise RuntimeError("Missing API keys")
|
30 |
|
31 |
# ββ Agent Configuration ββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
32 |
class ClinicalPrompts:
|
33 |
SYSTEM_PROMPT = """
|
34 |
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation...
|
35 |
[SYSTEM PROMPT CONTENT HERE]
|
36 |
"""
|
37 |
|
38 |
+
MAX_ITERATIONS = 4
|
39 |
+
AGENT_MODEL_NAME = "llama3-70b-8192"
|
40 |
+
AGENT_TEMPERATURE = 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# ββ State Definition βββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
class AgentState(TypedDict):
|
44 |
messages: List[Any]
|
45 |
patient_data: Optional[Dict[str, Any]]
|
46 |
summary: Optional[str]
|
47 |
interaction_warnings: Optional[List[str]]
|
48 |
+
done: bool
|
49 |
+
iterations: int
|
50 |
|
|
|
51 |
def propagate_state(new: Dict[str, Any], old: Dict[str, Any]) -> Dict[str, Any]:
|
52 |
+
"""Merge new state changes with existing state"""
|
53 |
+
return {**old, **new}
|
|
|
|
|
54 |
|
55 |
+
# ββ Core Agent Node ββββββββββββββββββββββββββββββββββββββββββββββββββ
|
56 |
def agent_node(state: AgentState) -> Dict[str, Any]:
|
57 |
+
"""Main agent node with iteration tracking"""
|
58 |
+
state = dict(state) # Create mutable copy
|
59 |
+
|
60 |
+
# Check termination conditions
|
61 |
if state.get("done", False):
|
62 |
return state
|
63 |
+
|
64 |
+
# Update iteration count
|
65 |
+
iterations = state.get("iterations", 0) + 1
|
66 |
+
state["iterations"] = iterations
|
67 |
+
|
68 |
+
# Enforce iteration limit
|
69 |
+
if iterations >= MAX_ITERATIONS:
|
70 |
+
return {
|
71 |
+
"messages": [AIMessage(content="Consultation concluded. Maximum iterations reached.")],
|
72 |
+
"done": True,
|
73 |
+
**state
|
74 |
+
}
|
75 |
+
|
76 |
+
# Prepare message history
|
77 |
+
messages = state.get("messages", [])
|
78 |
+
if not messages or not isinstance(messages[0], SystemMessage):
|
79 |
+
messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + messages
|
80 |
+
|
81 |
try:
|
82 |
+
# Generate response
|
83 |
+
llm_response = ChatGroq(
|
84 |
+
temperature=AGENT_TEMPERATURE,
|
85 |
+
model=AGENT_MODEL_NAME
|
86 |
+
).invoke(messages)
|
87 |
+
|
88 |
+
return propagate_state({
|
89 |
+
"messages": [llm_response],
|
90 |
+
"done": "consultation complete" in llm_response.content.lower()
|
91 |
+
}, state)
|
92 |
+
|
93 |
except Exception as e:
|
94 |
+
logger.error(f"Agent error: {str(e)}")
|
95 |
+
return propagate_state({
|
96 |
+
"messages": [AIMessage(content=f"System Error: {str(e)}")],
|
97 |
+
"done": True
|
98 |
+
}, state)
|
99 |
+
|
100 |
+
# ββ Tool Handling Nodes ββββββββββββββββββββββββββββββββββββββββββββββ
|
101 |
+
tool_executor = ToolExecutor([
|
102 |
+
TavilySearchResults(max_results=3),
|
103 |
+
# Include other tools here...
|
104 |
+
])
|
105 |
|
106 |
def tool_node(state: AgentState) -> Dict[str, Any]:
|
107 |
+
"""Execute tool calls from last agent message"""
|
108 |
+
state = dict(state)
|
109 |
+
messages = state["messages"]
|
110 |
+
last_message = messages[-1]
|
111 |
+
|
112 |
+
if not isinstance(last_message, AIMessage) or not last_message.tool_calls:
|
113 |
return state
|
114 |
+
|
115 |
+
tool_calls = last_message.tool_calls
|
116 |
+
outputs = []
|
117 |
+
|
118 |
+
for tool_call in tool_calls:
|
119 |
+
try:
|
120 |
+
output = tool_executor.invoke(tool_call)
|
121 |
+
outputs.append(
|
122 |
+
ToolMessage(
|
123 |
+
content=json.dumps(output),
|
124 |
+
tool_call_id=tool_call["id"],
|
125 |
+
name=tool_call["name"]
|
126 |
+
)
|
127 |
+
)
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Tool error: {str(e)}")
|
130 |
+
outputs.append(
|
131 |
+
ToolMessage(
|
132 |
+
content=json.dumps({"error": str(e)}),
|
133 |
+
tool_call_id=tool_call["id"],
|
134 |
+
name=tool_call["name"]
|
135 |
+
)
|
136 |
+
)
|
137 |
+
|
138 |
+
return propagate_state({
|
139 |
+
"messages": outputs,
|
140 |
+
"interaction_warnings": detect_interaction_warnings(outputs)
|
141 |
+
}, state)
|
142 |
+
|
143 |
+
def detect_interaction_warnings(tool_messages: List[ToolMessage]) -> List[str]:
|
144 |
+
"""Parse tool outputs for interaction warnings"""
|
145 |
+
warnings = []
|
146 |
+
for msg in tool_messages:
|
147 |
+
try:
|
148 |
+
content = json.loads(msg.content)
|
149 |
+
if content.get("status") == "warning":
|
150 |
+
warnings.extend(content.get("warnings", []))
|
151 |
+
except json.JSONDecodeError:
|
152 |
+
continue
|
153 |
+
return warnings
|
154 |
+
|
155 |
+
# ββ Safety Reflection Node βββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
def reflection_node(state: AgentState) -> Dict[str, Any]:
|
157 |
+
"""Analyze potential safety issues"""
|
158 |
+
warnings = state.get("interaction_warnings", [])
|
159 |
+
if not warnings:
|
160 |
return state
|
161 |
+
|
162 |
+
prompt = f"""Analyze these clinical warnings:
|
163 |
+
{chr(10).join(warnings)}
|
164 |
+
|
165 |
+
Provide concise safety recommendations:"""
|
166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
try:
|
168 |
+
reflection = ChatGroq(
|
169 |
+
temperature=0.0, # Strict safety mode
|
170 |
+
model=AGENT_MODEL_NAME
|
171 |
+
).invoke([HumanMessage(content=prompt)])
|
172 |
+
|
173 |
+
return propagate_state({
|
174 |
+
"messages": [reflection],
|
175 |
+
"summary": f"Safety Review:\n{reflection.content}"
|
176 |
+
}, state)
|
177 |
+
|
178 |
except Exception as e:
|
179 |
+
logger.error(f"Reflection error: {str(e)}")
|
180 |
+
return propagate_state({
|
181 |
+
"messages": [AIMessage(content=f"Safety review unavailable: {str(e)}")],
|
182 |
+
"summary": "Failed safety review"
|
183 |
+
}, state)
|
184 |
+
|
185 |
+
# ββ State Routing Logic ββββββββββββββββββββββββββββββββββββββββββββββ
|
186 |
+
def route_state(state: AgentState) -> str:
|
187 |
+
"""Determine next node in workflow"""
|
188 |
+
if state.get("done", False):
|
189 |
+
return "end"
|
190 |
+
|
191 |
+
messages = state.get("messages", [])
|
192 |
+
|
193 |
+
# Prioritize safety reflection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
if state.get("interaction_warnings"):
|
195 |
return "reflection"
|
196 |
+
|
197 |
+
# Check for tool calls
|
198 |
+
if messages and isinstance(messages[-1], AIMessage):
|
199 |
+
if messages[-1].tool_calls:
|
200 |
+
return "tools"
|
201 |
+
|
202 |
+
return "agent"
|
203 |
|
204 |
+
# ββ Workflow Construction ββββββββββββββββββββββββββββββββββββββββββββ
|
205 |
class ClinicalAgent:
|
206 |
def __init__(self):
|
207 |
+
self.workflow = StateGraph(AgentState)
|
208 |
+
|
209 |
+
# Define nodes
|
210 |
+
self.workflow.add_node("agent", agent_node)
|
211 |
+
self.workflow.add_node("tools", tool_node)
|
212 |
+
self.workflow.add_node("reflection", reflection_node)
|
213 |
+
|
214 |
+
# Configure edges
|
215 |
+
self.workflow.set_entry_point("agent")
|
216 |
+
|
217 |
+
self.workflow.add_conditional_edges(
|
218 |
+
"agent",
|
219 |
+
lambda state: "tools" if state.get("messages")[-1].tool_calls else "end",
|
220 |
+
{"tools": "tools", "end": END}
|
221 |
+
)
|
222 |
+
|
223 |
+
self.workflow.add_conditional_edges(
|
224 |
+
"tools",
|
225 |
+
lambda state: "reflection" if state.get("interaction_warnings") else "agent",
|
226 |
+
{"reflection": "reflection", "agent": "agent"}
|
227 |
+
)
|
228 |
+
|
229 |
+
self.workflow.add_edge("reflection", "agent")
|
230 |
+
|
231 |
+
self.app = self.workflow.compile()
|
232 |
+
|
233 |
+
def consult(self, initial_state: Dict) -> Dict:
|
234 |
+
"""Execute full consultation workflow"""
|
235 |
try:
|
236 |
+
return self.app.invoke(
|
237 |
+
initial_state,
|
238 |
+
{"recursion_limit": MAX_ITERATIONS + 2}
|
239 |
+
)
|
240 |
except Exception as e:
|
241 |
+
logger.error(f"Consultation failed: {str(e)}")
|
242 |
return {
|
243 |
+
"error": str(e),
|
244 |
+
"trace": traceback.format_exc(),
|
245 |
+
"done": True
|
|
|
246 |
}
|
247 |
+
|
248 |
+
# ββ Example Usage ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
249 |
+
if __name__ == "__main__":
|
250 |
+
agent = ClinicalAgent()
|
251 |
+
|
252 |
+
initial_state = {
|
253 |
+
"messages": [HumanMessage(content="Patient presents with chest pain")],
|
254 |
+
"patient_data": {
|
255 |
+
"age": 45,
|
256 |
+
"vitals": {"bp": "150/95", "hr": 110}
|
257 |
+
},
|
258 |
+
"done": False,
|
259 |
+
"iterations": 0
|
260 |
+
}
|
261 |
+
|
262 |
+
result = agent.consult(initial_state)
|
263 |
+
print("Final State:", json.dumps(result, indent=2))
|