Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
from uuid import uuid4
|
4 |
+
import sqlite3
|
5 |
+
import plotly.express as px
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from langgraph.checkpoint.sqlite import SqliteSaver
|
8 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
+
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
|
10 |
+
|
11 |
+
# Initialize components
|
12 |
+
def init_components():
|
13 |
+
model = ChatGroq(temperature=0.1, model="Llama-3.3-70b-Specdec")
|
14 |
+
tool = TavilySearchResults(max_results=3)
|
15 |
+
conn = sqlite3.connect("medical_checkpoints.db", check_same_thread=False)
|
16 |
+
memory = SqliteSaver(conn)
|
17 |
+
return model, tool, memory
|
18 |
+
|
19 |
+
# Medical Agent Class
|
20 |
+
class AdvancedMedicalAgent:
|
21 |
+
def __init__(self, model, tools, memory):
|
22 |
+
self.model = model.bind_tools(tools)
|
23 |
+
self.tools = {t.name: t for t in tools}
|
24 |
+
self.memory = memory
|
25 |
+
|
26 |
+
def process_query(self, patient_data, thread_id):
|
27 |
+
# Initialize or retrieve conversation thread
|
28 |
+
if 'history' not in st.session_state:
|
29 |
+
st.session_state.history = []
|
30 |
+
|
31 |
+
# Add patient data visualization
|
32 |
+
self.display_patient_dashboard(patient_data)
|
33 |
+
|
34 |
+
# Process medical inquiry
|
35 |
+
response = self.model.invoke([
|
36 |
+
SystemMessage(content=self.get_system_prompt()),
|
37 |
+
HumanMessage(content=f"Patient Case:\n{patient_data}")
|
38 |
+
])
|
39 |
+
|
40 |
+
# Handle tool calls
|
41 |
+
if hasattr(response, 'tool_calls'):
|
42 |
+
self.handle_medical_actions(response.tool_calls, thread_id)
|
43 |
+
|
44 |
+
st.session_state.history.append(("AI", response.content))
|
45 |
+
|
46 |
+
def display_patient_dashboard(self, data):
|
47 |
+
tab1, tab2, tab3 = st.tabs(["Vitals", "History", "Timeline"])
|
48 |
+
|
49 |
+
with tab1:
|
50 |
+
fig = px.line(
|
51 |
+
x=["Temperature", "BP", "Heart Rate"],
|
52 |
+
y=[data['vitals']['temp'], 130, 85], # Example data
|
53 |
+
title="Vital Signs"
|
54 |
+
)
|
55 |
+
st.plotly_chart(fig)
|
56 |
+
|
57 |
+
with tab2:
|
58 |
+
st.json(data['history'])
|
59 |
+
|
60 |
+
with tab3:
|
61 |
+
st.vega_lite_chart({
|
62 |
+
"mark": {"type": "circle", "tooltip": True},
|
63 |
+
"encoding": {
|
64 |
+
"x": {"field": "timestamp", "type": "temporal"},
|
65 |
+
"y": {"field": "severity", "type": "quantitative"}
|
66 |
+
}
|
67 |
+
})
|
68 |
+
|
69 |
+
def handle_medical_actions(self, tool_calls, thread_id):
|
70 |
+
for call in tool_calls:
|
71 |
+
st.warning(f"🩺 Pending Medical Action: {call['name']}")
|
72 |
+
|
73 |
+
if st.button("Review Action Details"):
|
74 |
+
st.write(f"**Action Type:** {call['name']}")
|
75 |
+
st.write(f"**Parameters:** {call['args']}")
|
76 |
+
|
77 |
+
if st.checkbox("I approve this action"):
|
78 |
+
result = self.tools[call['name']].invoke(call['args'])
|
79 |
+
st.session_state.history.append(
|
80 |
+
("System", f"Action executed: {result}")
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
st.session_state.history.append(
|
84 |
+
("System", "Action cancelled by clinician")
|
85 |
+
)
|
86 |
+
|
87 |
+
def get_system_prompt(self):
|
88 |
+
return """You are an advanced medical AI assistant. Follow these steps:
|
89 |
+
1. Analyze patient data using latest clinical guidelines
|
90 |
+
2. Consider drug interactions and contraindications
|
91 |
+
3. Propose differential diagnosis (3 possibilities)
|
92 |
+
4. Suggest evidence-based treatment options
|
93 |
+
5. Identify necessary lab tests with reasoning
|
94 |
+
6. Flag high-risk factors in RED
|
95 |
+
7. Maintain audit trail of all decisions"""
|
96 |
+
|
97 |
+
# Streamlit UI
|
98 |
+
def main():
|
99 |
+
st.set_page_config(page_title="AI Clinical Assistant", layout="wide")
|
100 |
+
|
101 |
+
with st.sidebar:
|
102 |
+
st.header("Patient Intake")
|
103 |
+
patient_data = {
|
104 |
+
"symptoms": st.multiselect("Symptoms", ["Fever", "Cough", "Chest Pain"]),
|
105 |
+
"history": {
|
106 |
+
"conditions": st.text_input("Medical History"),
|
107 |
+
"medications": st.text_input("Current Medications")
|
108 |
+
},
|
109 |
+
"vitals": {
|
110 |
+
"temp": st.number_input("Temperature (°C)", 36.0, 42.0, 37.0),
|
111 |
+
"bp": st.text_input("Blood Pressure (mmHg)", "120/80")
|
112 |
+
}
|
113 |
+
}
|
114 |
+
|
115 |
+
st.title("🧠 AI-Powered Clinical Decision Support")
|
116 |
+
|
117 |
+
model, tool, memory = init_components()
|
118 |
+
agent = AdvancedMedicalAgent(model, [tool], memory)
|
119 |
+
|
120 |
+
if st.button("Start Analysis"):
|
121 |
+
with st.spinner("Analyzing patient case..."):
|
122 |
+
agent.process_query(patient_data, str(uuid4()))
|
123 |
+
|
124 |
+
if 'history' in st.session_state:
|
125 |
+
st.subheader("Clinical Decision Log")
|
126 |
+
for role, content in st.session_state.history:
|
127 |
+
with st.chat_message(role):
|
128 |
+
st.markdown(content)
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
main()
|