Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,561 @@
|
|
1 |
import streamlit as st
|
2 |
from langchain_groq import ChatGroq
|
3 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
4 |
-
from langchain_core.messages import HumanMessage, SystemMessage
|
|
|
|
|
|
|
5 |
from langchain_core.tools import tool
|
6 |
-
from typing import Optional
|
7 |
import json
|
|
|
8 |
|
9 |
-
# Configuration
|
10 |
-
class
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def __init__(self):
|
40 |
-
self.model = ChatGroq(
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
-
st.error(f"Error
|
52 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
def process_action(self, action: dict) -> str:
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
if tool_name == "order_lab_test":
|
60 |
-
return order_lab_test.invoke(args)
|
61 |
-
elif tool_name == "prescribe_medication":
|
62 |
-
return prescribe_medication.invoke(args)
|
63 |
-
else:
|
64 |
-
return f"Unknown action: {tool_name}"
|
65 |
except Exception as e:
|
66 |
-
|
|
|
67 |
|
68 |
-
# Streamlit UI
|
69 |
def main():
|
70 |
-
st.set_page_config(page_title=
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
if 'agent' not in st.session_state:
|
74 |
-
st.session_state.agent =
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
with st.sidebar:
|
78 |
-
st.header("Patient Intake")
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
patient_data = {
|
86 |
-
"
|
87 |
-
"
|
88 |
-
|
89 |
-
|
90 |
-
},
|
|
|
|
|
|
|
|
|
91 |
"vitals": {
|
92 |
-
"
|
93 |
-
"
|
94 |
-
}
|
|
|
95 |
}
|
96 |
-
|
97 |
-
# Main
|
98 |
-
st.
|
99 |
-
|
100 |
-
#
|
101 |
-
if st.button("
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from langchain_groq import ChatGroq
|
3 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
4 |
+
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
|
5 |
+
from langchain_core.prompts import ChatPromptTemplate
|
6 |
+
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
8 |
from langchain_core.tools import tool
|
9 |
+
from typing import Optional, List, Dict, Any
|
10 |
import json
|
11 |
+
import re # For parsing vitals like BP
|
12 |
|
13 |
+
# --- Configuration & Constants ---
|
14 |
+
class ClinicalAppSettings:
|
15 |
+
APP_TITLE = "SynapseAI: Advanced Clinical Decision Support"
|
16 |
+
PAGE_LAYOUT = "wide"
|
17 |
+
MODEL_NAME = "llama3-70b-8192" # Use a powerful model like Groq's Llama3 70b
|
18 |
+
TEMPERATURE = 0.1
|
19 |
+
MAX_SEARCH_RESULTS = 3
|
20 |
+
|
21 |
+
class ClinicalPrompts:
|
22 |
+
SYSTEM_PROMPT = """
|
23 |
+
You are SynapseAI, an expert AI clinical assistant designed to support healthcare professionals.
|
24 |
+
Your primary function is to analyze patient data, provide differential diagnoses, suggest evidence-based management plans, and identify potential risks according to the latest medical guidelines and safety protocols.
|
25 |
+
|
26 |
+
**Core Directives:**
|
27 |
+
1. **Comprehensive Analysis:** Thoroughly analyze ALL provided patient data (demographics, HPI, PMH, PSH, Allergies, Meds, SH, FH, ROS, Vitals, Exam).
|
28 |
+
2. **Structured Output:** ALWAYS format your response using the following JSON structure:
|
29 |
+
```json
|
30 |
+
{
|
31 |
+
"assessment": "Concise summary of the patient's presentation and key findings.",
|
32 |
+
"differential_diagnosis": [
|
33 |
+
{"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence..."},
|
34 |
+
{"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
|
35 |
+
{"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
|
36 |
+
],
|
37 |
+
"risk_assessment": {
|
38 |
+
"identified_red_flags": ["List any triggered red flags based on input"],
|
39 |
+
"immediate_concerns": ["Specific urgent issues requiring attention (e.g., sepsis risk, ACS rule-out)"],
|
40 |
+
"potential_complications": ["Possible future issues based on presentation"]
|
41 |
+
},
|
42 |
+
"recommended_plan": {
|
43 |
+
"investigations": ["List specific lab tests or imaging required. Use 'order_lab_test' tool."],
|
44 |
+
"therapeutics": ["Suggest specific treatments or prescriptions. Use 'prescribe_medication' tool."],
|
45 |
+
"consultations": ["Recommend specialist consultations if needed."],
|
46 |
+
"patient_education": ["Key points for patient communication."]
|
47 |
+
},
|
48 |
+
"rationale_summary": "Brief justification for the overall assessment and plan, referencing guidelines or evidence where possible. Use 'tavily_search_results' tool if needed to find supporting evidence/guidelines.",
|
49 |
+
"interaction_check_summary": "Summary of findings from the 'check_drug_interactions' tool IF a new medication was considered or prescribed."
|
50 |
+
}
|
51 |
+
```
|
52 |
+
3. **Safety First - Red Flags:** Immediately identify and report any conditions matching the defined RED_FLAGS. Use the `flag_risk` tool if critical.
|
53 |
+
4. **Safety First - Drug Interactions:** BEFORE suggesting *any* new prescription, you MUST use the `check_drug_interactions` tool to verify against the patient's current medications and allergies. Mention the result in `interaction_check_summary`.
|
54 |
+
5. **Tool Utilization:** Employ the provided tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) precisely when indicated by your plan. Adhere strictly to tool schemas. Do NOT hallucinate tool usage results; wait for actual tool output if required in a multi-turn scenario (though this implementation focuses on single-turn analysis with tool calls).
|
55 |
+
6. **Evidence-Based:** Briefly cite reasoning, drawing on general medical knowledge. Use Tavily Search for specific guideline checks or novel information when necessary.
|
56 |
+
7. **Clarity and Conciseness:** Be clear, avoiding ambiguity. Use standard medical terminology.
|
57 |
+
"""
|
58 |
+
|
59 |
+
# --- Mock Data / Helpers ---
|
60 |
+
# (In a real system, this would be a proper API/database)
|
61 |
+
MOCK_INTERACTION_DB = {
|
62 |
+
("Lisinopril", "Spironolactone"): "High risk of hyperkalemia. Monitor potassium closely.",
|
63 |
+
("Warfarin", "Amiodarone"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
|
64 |
+
("Simvastatin", "Clarithromycin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
|
65 |
+
("Aspirin", "Ibuprofen"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding."
|
66 |
+
}
|
67 |
+
|
68 |
+
ALLERGY_INTERACTIONS = {
|
69 |
+
"Penicillin": ["Amoxicillin", "Ampicillin", "Piperacillin"],
|
70 |
+
"Sulfa": ["Sulfamethoxazole", "Sulfasalazine"],
|
71 |
+
"Aspirin": ["Ibuprofen", "Naproxen"] # Cross-reactivity example for NSAIDs
|
72 |
+
}
|
73 |
+
|
74 |
+
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
|
75 |
+
"""Parses BP string like '120/80' into (systolic, diastolic) integers."""
|
76 |
+
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string)
|
77 |
+
if match:
|
78 |
+
return int(match.group(1)), int(match.group(2))
|
79 |
+
return None
|
80 |
+
|
81 |
+
def check_red_flags(patient_data: dict) -> List[str]:
|
82 |
+
"""Checks patient data against predefined red flags."""
|
83 |
+
flags = []
|
84 |
+
symptoms = patient_data.get("hpi", {}).get("symptoms", [])
|
85 |
+
vitals = patient_data.get("vitals", {})
|
86 |
+
history = patient_data.get("pmh", {}).get("conditions", "")
|
87 |
+
|
88 |
+
# Symptom Flags
|
89 |
+
if "chest pain" in [s.lower() for s in symptoms]: flags.append("Red Flag: Chest Pain reported.")
|
90 |
+
if "shortness of breath" in [s.lower() for s in symptoms]: flags.append("Red Flag: Shortness of Breath reported.")
|
91 |
+
if "severe headache" in [s.lower() for s in symptoms]: flags.append("Red Flag: Severe Headache reported.")
|
92 |
+
if "sudden vision loss" in [s.lower() for s in symptoms]: flags.append("Red Flag: Sudden Vision Loss reported.")
|
93 |
+
if "weakness on one side" in [s.lower() for s in symptoms]: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
|
94 |
+
|
95 |
+
# Vital Sign Flags (add more checks as needed)
|
96 |
+
if "temp_c" in vitals and vitals["temp_c"] >= 38.5: flags.append(f"Red Flag: Fever (Temperature: {vitals['temp_c']}Β°C).")
|
97 |
+
if "hr_bpm" in vitals and vitals["hr_bpm"] >= 120: flags.append(f"Red Flag: Tachycardia (Heart Rate: {vitals['hr_bpm']} bpm).")
|
98 |
+
if "rr_rpm" in vitals and vitals["rr_rpm"] >= 24: flags.append(f"Red Flag: Tachypnea (Respiratory Rate: {vitals['rr_rpm']} rpm).")
|
99 |
+
if "spo2_percent" in vitals and vitals["spo2_percent"] <= 92: flags.append(f"Red Flag: Hypoxia (SpO2: {vitals['spo2_percent']}%).")
|
100 |
+
if "bp_mmhg" in vitals:
|
101 |
+
bp = parse_bp(vitals["bp_mmhg"])
|
102 |
+
if bp:
|
103 |
+
if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {vitals['bp_mmhg']} mmHg).")
|
104 |
+
if bp[0] <= 90 and bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {vitals['bp_mmhg']} mmHg).")
|
105 |
+
|
106 |
+
# History Flags (Simple examples)
|
107 |
+
if "history of mi" in history.lower() and "chest pain" in [s.lower() for s in symptoms]: flags.append("Red Flag: History of MI with current Chest Pain.")
|
108 |
+
|
109 |
+
return flags
|
110 |
+
|
111 |
+
# --- Enhanced Tool Definitions ---
|
112 |
+
|
113 |
+
# Use Pydantic models for robust argument validation
|
114 |
+
class LabOrderInput(BaseModel):
|
115 |
+
test_name: str = Field(..., description="Specific name of the lab test or panel (e.g., 'CBC', 'BMP', 'Troponin I', 'Urinalysis').")
|
116 |
+
reason: str = Field(..., description="Clinical justification for ordering the test (e.g., 'Rule out infection', 'Assess renal function', 'Evaluate for ACS').")
|
117 |
+
priority: str = Field("Routine", description="Priority of the test (e.g., 'STAT', 'Routine').")
|
118 |
+
|
119 |
+
@tool("order_lab_test", args_schema=LabOrderInput)
|
120 |
+
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
|
121 |
+
"""Orders a specific lab test with clinical justification and priority."""
|
122 |
+
return json.dumps({
|
123 |
+
"status": "success",
|
124 |
+
"message": f"Lab Ordered: {test_name} ({priority})",
|
125 |
+
"details": f"Reason: {reason}"
|
126 |
+
})
|
127 |
+
|
128 |
+
class PrescriptionInput(BaseModel):
|
129 |
+
medication_name: str = Field(..., description="Name of the medication.")
|
130 |
+
dosage: str = Field(..., description="Dosage amount and unit (e.g., '500 mg', '10 mg').")
|
131 |
+
route: str = Field(..., description="Route of administration (e.g., 'PO', 'IV', 'IM', 'Topical').")
|
132 |
+
frequency: str = Field(..., description="How often the medication should be taken (e.g., 'BID', 'QDaily', 'Q4-6H PRN').")
|
133 |
+
duration: str = Field("As directed", description="Duration of treatment (e.g., '7 days', '1 month', 'Until follow-up').")
|
134 |
+
reason: str = Field(..., description="Clinical indication for the prescription.")
|
135 |
+
|
136 |
+
@tool("prescribe_medication", args_schema=PrescriptionInput)
|
137 |
+
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
|
138 |
+
"""Prescribes a medication with detailed instructions and clinical indication."""
|
139 |
+
# In a real scenario, this would trigger an e-prescription workflow
|
140 |
+
return json.dumps({
|
141 |
+
"status": "success",
|
142 |
+
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
|
143 |
+
"details": f"Duration: {duration}. Reason: {reason}"
|
144 |
+
})
|
145 |
+
|
146 |
+
class InteractionCheckInput(BaseModel):
|
147 |
+
potential_prescription: str = Field(..., description="The name of the NEW medication being considered.")
|
148 |
+
current_medications: List[str] = Field(..., description="List of the patient's CURRENT medication names.")
|
149 |
+
allergies: List[str] = Field(..., description="List of the patient's known allergies.")
|
150 |
+
|
151 |
+
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
|
152 |
+
def check_drug_interactions(potential_prescription: str, current_medications: List[str], allergies: List[str]) -> str:
|
153 |
+
"""Checks for potential drug-drug and drug-allergy interactions BEFORE prescribing."""
|
154 |
+
warnings = []
|
155 |
+
potential_med_lower = potential_prescription.lower()
|
156 |
+
|
157 |
+
# Check Allergies
|
158 |
+
for allergy in allergies:
|
159 |
+
allergy_lower = allergy.lower()
|
160 |
+
# Simple direct check
|
161 |
+
if allergy_lower == potential_med_lower:
|
162 |
+
warnings.append(f"CRITICAL ALLERGY: Patient allergic to {allergy}. Cannot prescribe {potential_prescription}.")
|
163 |
+
continue
|
164 |
+
# Check cross-reactivity (using simplified mock data)
|
165 |
+
if allergy_lower in ALLERGY_INTERACTIONS:
|
166 |
+
for cross_reactant in ALLERGY_INTERACTIONS[allergy_lower]:
|
167 |
+
if cross_reactant.lower() == potential_med_lower:
|
168 |
+
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to {allergy}. High risk with {potential_prescription}.")
|
169 |
+
|
170 |
+
# Check Drug-Drug Interactions (using simplified mock data)
|
171 |
+
current_meds_lower = [med.lower() for med in current_medications]
|
172 |
+
for current_med in current_meds_lower:
|
173 |
+
# Check pairs in both orders
|
174 |
+
pair1 = (current_med, potential_med_lower)
|
175 |
+
pair2 = (potential_med_lower, current_med)
|
176 |
+
if pair1 in MOCK_INTERACTION_DB:
|
177 |
+
warnings.append(f"Interaction Found: {potential_prescription} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair1]}")
|
178 |
+
elif pair2 in MOCK_INTERACTION_DB:
|
179 |
+
warnings.append(f"Interaction Found: {potential_prescription} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair2]}")
|
180 |
+
|
181 |
+
if not warnings:
|
182 |
+
return json.dumps({"status": "clear", "message": f"No major interactions identified for {potential_prescription} with current meds/allergies.", "warnings": []})
|
183 |
+
else:
|
184 |
+
return json.dumps({"status": "warning", "message": f"Potential interactions identified for {potential_prescription}.", "warnings": warnings})
|
185 |
+
|
186 |
+
class FlagRiskInput(BaseModel):
|
187 |
+
risk_description: str = Field(..., description="Specific critical risk identified (e.g., 'Suspected Sepsis', 'Acute Coronary Syndrome', 'Stroke Alert').")
|
188 |
+
urgency: str = Field("High", description="Urgency level (e.g., 'Critical', 'High', 'Moderate').")
|
189 |
+
|
190 |
+
@tool("flag_risk", args_schema=FlagRiskInput)
|
191 |
+
def flag_risk(risk_description: str, urgency: str) -> str:
|
192 |
+
"""Flags a critical risk identified during analysis for immediate attention."""
|
193 |
+
st.error(f"π¨ **{urgency.upper()} RISK FLAGGED:** {risk_description}", icon="π¨")
|
194 |
+
return json.dumps({
|
195 |
+
"status": "flagged",
|
196 |
+
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
|
197 |
+
})
|
198 |
+
|
199 |
+
|
200 |
+
# Initialize Search Tool
|
201 |
+
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS)
|
202 |
+
|
203 |
+
# --- Core Agent Logic ---
|
204 |
+
class ClinicalAgent:
|
205 |
def __init__(self):
|
206 |
+
self.model = ChatGroq(
|
207 |
+
temperature=ClinicalAppSettings.TEMPERATURE,
|
208 |
+
model=ClinicalAppSettings.MODEL_NAME
|
209 |
+
)
|
210 |
+
# Combine all tools
|
211 |
+
self.tools = [
|
212 |
+
order_lab_test,
|
213 |
+
prescribe_medication,
|
214 |
+
check_drug_interactions,
|
215 |
+
flag_risk,
|
216 |
+
search_tool
|
217 |
+
]
|
218 |
+
# Bind tools to the model
|
219 |
+
self.model_with_tools = self.model.bind_tools(self.tools)
|
220 |
+
# History for context (simple implementation)
|
221 |
+
self.history = []
|
222 |
|
223 |
+
def _format_patient_data_for_prompt(self, data: dict) -> str:
|
224 |
+
"""Formats the patient dictionary into a readable string for the LLM."""
|
225 |
+
prompt_str = "Patient Data:\n"
|
226 |
+
for key, value in data.items():
|
227 |
+
if isinstance(value, dict):
|
228 |
+
prompt_str += f" {key.replace('_', ' ').title()}:\n"
|
229 |
+
for sub_key, sub_value in value.items():
|
230 |
+
if sub_value: # Only include if there's data
|
231 |
+
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
|
232 |
+
elif isinstance(value, list) and value:
|
233 |
+
prompt_str += f" {key.replace('_', ' ').title()}: {', '.join(map(str, value))}\n"
|
234 |
+
elif value: # Only include non-empty fields
|
235 |
+
prompt_str += f" {key.replace('_', ' ').title()}: {value}\n"
|
236 |
+
return prompt_str.strip()
|
237 |
+
|
238 |
+
|
239 |
+
def analyze(self, patient_data: dict) -> tuple[Optional[dict], List[dict]]:
|
240 |
+
"""Runs the analysis, handling tool calls and parsing the structured output."""
|
241 |
try:
|
242 |
+
# Add System Prompt and formatted Patient Data
|
243 |
+
# Simple history management: add previous messages if any
|
244 |
+
messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)]
|
245 |
+
# Include history if needed - consider token limits
|
246 |
+
# messages.extend(self.history)
|
247 |
+
formatted_data = self._format_patient_data_for_prompt(patient_data)
|
248 |
+
messages.append(HumanMessage(content=formatted_data))
|
249 |
+
|
250 |
+
# Invoke the model
|
251 |
+
ai_response = self.model_with_tools.invoke(messages)
|
252 |
+
|
253 |
+
# Store conversation turn
|
254 |
+
# self.history.append(HumanMessage(content=formatted_data))
|
255 |
+
# self.history.append(ai_response) # AIMessage includes tool calls
|
256 |
+
|
257 |
+
response_content = None
|
258 |
+
tool_calls = []
|
259 |
+
|
260 |
+
if isinstance(ai_response, AIMessage):
|
261 |
+
# Check if the response contains the structured JSON output
|
262 |
+
try:
|
263 |
+
# Sometimes the JSON is embedded in the content, sometimes it's the primary content
|
264 |
+
# Look for ```json ... ``` block first
|
265 |
+
json_match = re.search(r"```json\n(\{.*?\})\n```", ai_response.content, re.DOTALL)
|
266 |
+
if json_match:
|
267 |
+
response_content = json.loads(json_match.group(1))
|
268 |
+
else:
|
269 |
+
# Try parsing the whole content as JSON
|
270 |
+
response_content = json.loads(ai_response.content)
|
271 |
+
except json.JSONDecodeError:
|
272 |
+
st.warning("AI did not return valid JSON in the expected format. Displaying raw content.")
|
273 |
+
st.code(ai_response.content, language=None) # Display raw if not JSON
|
274 |
+
response_content = {"assessment": ai_response.content, "error": "Output format incorrect"}
|
275 |
+
|
276 |
+
# Extract tool calls separately
|
277 |
+
if ai_response.tool_calls:
|
278 |
+
tool_calls = ai_response.tool_calls
|
279 |
+
|
280 |
+
return response_content, tool_calls
|
281 |
+
|
282 |
except Exception as e:
|
283 |
+
st.error(f"Error during AI analysis: {str(e)}")
|
284 |
+
return None, []
|
285 |
+
|
286 |
+
def process_tool_call(self, tool_call: Dict[str, Any]) -> Any:
|
287 |
+
"""Executes a single tool call."""
|
288 |
+
tool_name = tool_call.get("name")
|
289 |
+
tool_args = tool_call.get("args", {})
|
290 |
+
selected_tool = {t.name: t for t in self.tools}.get(tool_name)
|
291 |
+
|
292 |
+
if not selected_tool:
|
293 |
+
return json.dumps({"status": "error", "message": f"Unknown tool: {tool_name}"})
|
294 |
|
|
|
295 |
try:
|
296 |
+
# Ensure args are correctly passed (Pydantic models handle validation)
|
297 |
+
return selected_tool.invoke(tool_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
except Exception as e:
|
299 |
+
st.error(f"Error executing tool '{tool_name}': {str(e)}")
|
300 |
+
return json.dumps({"status": "error", "message": f"Failed to execute {tool_name}: {str(e)}"})
|
301 |
|
302 |
+
# --- Streamlit UI ---
|
303 |
def main():
|
304 |
+
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
|
305 |
+
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
|
306 |
+
st.caption(f"Powered by Langchain & Groq ({ClinicalAppSettings.MODEL_NAME})")
|
307 |
+
|
308 |
+
# Initialize Agent in session state
|
309 |
if 'agent' not in st.session_state:
|
310 |
+
st.session_state.agent = ClinicalAgent()
|
311 |
+
if 'analysis_complete' not in st.session_state:
|
312 |
+
st.session_state.analysis_complete = False
|
313 |
+
if 'analysis_result' not in st.session_state:
|
314 |
+
st.session_state.analysis_result = None
|
315 |
+
if 'tool_call_results' not in st.session_state:
|
316 |
+
st.session_state.tool_call_results = []
|
317 |
+
if 'red_flags' not in st.session_state:
|
318 |
+
st.session_state.red_flags = []
|
319 |
+
|
320 |
+
# --- Patient Data Input Sidebar ---
|
321 |
with st.sidebar:
|
322 |
+
st.header("π Patient Intake Form")
|
323 |
+
|
324 |
+
# Demographics
|
325 |
+
st.subheader("Demographics")
|
326 |
+
age = st.number_input("Age", min_value=0, max_value=120, value=55)
|
327 |
+
sex = st.selectbox("Biological Sex", ["Male", "Female", "Other/Prefer not to say"])
|
328 |
+
|
329 |
+
# History of Present Illness (HPI)
|
330 |
+
st.subheader("History of Present Illness (HPI)")
|
331 |
+
chief_complaint = st.text_input("Chief Complaint", "Chest pain")
|
332 |
+
hpi_details = st.text_area("Detailed HPI", "55 y/o male presents with substernal chest pain started 2 hours ago, described as pressure, radiating to left arm. Associated with nausea and diaphoresis. Pain is 8/10 severity. No relief with rest.")
|
333 |
+
symptoms = st.multiselect("Associated Symptoms", ["Nausea", "Diaphoresis", "Shortness of Breath", "Dizziness", "Palpitations", "Fever", "Cough"], default=["Nausea", "Diaphoresis"])
|
334 |
+
|
335 |
+
# Past Medical/Surgical History (PMH/PSH)
|
336 |
+
st.subheader("Past History")
|
337 |
+
pmh = st.text_area("Past Medical History (PMH)", "Hypertension (HTN), Hyperlipidemia (HLD), Type 2 Diabetes Mellitus (DM2)")
|
338 |
+
psh = st.text_area("Past Surgical History (PSH)", "Appendectomy (2005)")
|
339 |
+
|
340 |
+
# Medications & Allergies
|
341 |
+
st.subheader("Medications & Allergies")
|
342 |
+
current_meds = st.text_area("Current Medications (name, dose, freq)", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily\nAspirin 81mg daily")
|
343 |
+
allergies = st.text_area("Allergies (comma separated)", "Penicillin (rash)")
|
344 |
+
|
345 |
+
# Social & Family History (SH/FH)
|
346 |
+
st.subheader("Social/Family History")
|
347 |
+
social_history = st.text_area("Social History (SH)", "Smoker (1 ppd x 30 years), occasional alcohol.")
|
348 |
+
family_history = st.text_area("Family History (FHx)", "Father had MI at age 60. Mother has HTN.")
|
349 |
+
|
350 |
+
# Review of Systems (ROS) - Simplified
|
351 |
+
# st.subheader("Review of Systems (ROS)") # Keep UI cleaner for now
|
352 |
+
# ros_constitutional = st.checkbox("ROS: Constitutional (Fever, Chills, Weight loss)")
|
353 |
+
# ros_cardiac = st.checkbox("ROS: Cardiac (Chest pain, Palpitations)", value=True) # Pre-check based on HPI
|
354 |
+
|
355 |
+
# Vitals & Basic Exam
|
356 |
+
st.subheader("Vitals & Exam Findings")
|
357 |
+
col1, col2 = st.columns(2)
|
358 |
+
with col1:
|
359 |
+
temp_c = st.number_input("Temperature (Β°C)", 35.0, 42.0, 36.8, format="%.1f")
|
360 |
+
hr_bpm = st.number_input("Heart Rate (bpm)", 30, 250, 95)
|
361 |
+
rr_rpm = st.number_input("Respiratory Rate (rpm)", 5, 50, 18)
|
362 |
+
with col2:
|
363 |
+
bp_mmhg = st.text_input("Blood Pressure (SYS/DIA)", "155/90")
|
364 |
+
spo2_percent = st.number_input("SpO2 (%)", 70, 100, 96)
|
365 |
+
pain_scale = st.slider("Pain (0-10)", 0, 10, 8)
|
366 |
+
exam_notes = st.text_area("Brief Physical Exam Notes", "Awake, alert, oriented x3. Mild distress. Lungs clear. Cardiac exam: Regular rhythm, no murmurs/gallops. Abdomen soft. No edema.")
|
367 |
+
|
368 |
+
# Clean medication list and allergies for processing
|
369 |
+
current_meds_list = [med.strip() for med in current_meds.split('\n') if med.strip()]
|
370 |
+
current_med_names = [med.split(' ')[0].strip() for med in current_meds_list] # Simplified name extraction
|
371 |
+
allergies_list = [a.strip() for a in allergies.split(',') if a.strip()]
|
372 |
+
|
373 |
+
# Compile Patient Data Dictionary
|
374 |
patient_data = {
|
375 |
+
"demographics": {"age": age, "sex": sex},
|
376 |
+
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
|
377 |
+
"pmh": {"conditions": pmh},
|
378 |
+
"psh": {"procedures": psh},
|
379 |
+
"medications": {"current": current_meds_list, "names_only": current_med_names},
|
380 |
+
"allergies": allergies_list,
|
381 |
+
"social_history": {"details": social_history},
|
382 |
+
"family_history": {"details": family_history},
|
383 |
+
# "ros": {"constitutional": ros_constitutional, "cardiac": ros_cardiac}, # Add if using ROS inputs
|
384 |
"vitals": {
|
385 |
+
"temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg,
|
386 |
+
"rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale
|
387 |
+
},
|
388 |
+
"exam_findings": {"notes": exam_notes}
|
389 |
}
|
390 |
+
|
391 |
+
# --- Main Analysis Area ---
|
392 |
+
st.header("π€ AI Clinical Analysis")
|
393 |
+
|
394 |
+
# Action Button
|
395 |
+
if st.button("Analyze Patient Data", type="primary", use_container_width=True):
|
396 |
+
st.session_state.analysis_complete = False
|
397 |
+
st.session_state.analysis_result = None
|
398 |
+
st.session_state.tool_call_results = []
|
399 |
+
st.session_state.red_flags = []
|
400 |
+
|
401 |
+
# 1. Initial Red Flag Check (Client-side before LLM)
|
402 |
+
st.session_state.red_flags = check_red_flags(patient_data)
|
403 |
+
if st.session_state.red_flags:
|
404 |
+
st.warning("**Initial Red Flags Detected:**")
|
405 |
+
for flag in st.session_state.red_flags:
|
406 |
+
st.warning(f"- {flag}")
|
407 |
+
st.warning("Proceeding with AI analysis, but these require immediate attention.")
|
408 |
+
|
409 |
+
# 2. Call AI Agent
|
410 |
+
with st.spinner("SynapseAI is processing the case... Please wait."):
|
411 |
+
analysis_output, tool_calls = st.session_state.agent.analyze(patient_data)
|
412 |
+
|
413 |
+
if analysis_output:
|
414 |
+
st.session_state.analysis_result = analysis_output
|
415 |
+
st.session_state.analysis_complete = True
|
416 |
+
|
417 |
+
# 3. Process any Tool Calls requested by the AI
|
418 |
+
if tool_calls:
|
419 |
+
st.info(f"AI recommended {len(tool_calls)} action(s). Executing...")
|
420 |
+
tool_results = []
|
421 |
+
with st.spinner("Executing recommended actions..."):
|
422 |
+
for call in tool_calls:
|
423 |
+
st.write(f"βοΈ Requesting: `{call['name']}` with args `{call['args']}`")
|
424 |
+
# Pass patient context if needed (e.g., for interaction check)
|
425 |
+
if call['name'] == 'check_drug_interactions':
|
426 |
+
call['args']['current_medications'] = patient_data['medications']['names_only']
|
427 |
+
call['args']['allergies'] = patient_data['allergies']
|
428 |
+
elif call['name'] == 'prescribe_medication':
|
429 |
+
# Pre-flight check: Ensure interaction check was requested *before* this prescribe call
|
430 |
+
interaction_check_requested = any(tc['name'] == 'check_drug_interactions' and tc['args'].get('potential_prescription') == call['args'].get('medication_name') for tc in tool_calls)
|
431 |
+
if not interaction_check_requested:
|
432 |
+
st.error(f"**Safety Violation:** AI attempted to prescribe '{call['args'].get('medication_name')}' without requesting `check_drug_interactions` first. Prescription blocked.")
|
433 |
+
tool_results.append({"tool_call_id": call['id'], "name": call['name'], "output": json.dumps({"status":"error", "message": "Interaction check not performed prior to prescription attempt."})})
|
434 |
+
continue # Skip this tool call
|
435 |
+
|
436 |
+
result = st.session_state.agent.process_tool_call(call)
|
437 |
+
tool_results.append({"tool_call_id": call['id'], "name": call['name'], "output": result}) # Store result with ID
|
438 |
+
|
439 |
+
# Display tool result immediately
|
440 |
+
try:
|
441 |
+
result_data = json.loads(result)
|
442 |
+
if result_data.get("status") == "success" or result_data.get("status") == "clear" or result_data.get("status") == "flagged":
|
443 |
+
st.success(f"β
Action `{call['name']}`: {result_data.get('message')}", icon="β
")
|
444 |
+
if result_data.get("details"): st.caption(f"Details: {result_data.get('details')}")
|
445 |
+
elif result_data.get("status") == "warning":
|
446 |
+
st.warning(f"β οΈ Action `{call['name']}`: {result_data.get('message')}", icon="β οΈ")
|
447 |
+
if result_data.get("warnings"):
|
448 |
+
for warn in result_data["warnings"]: st.caption(f"- {warn}")
|
449 |
+
else:
|
450 |
+
st.error(f"β Action `{call['name']}`: {result_data.get('message')}", icon="β")
|
451 |
+
except json.JSONDecodeError:
|
452 |
+
st.error(f"Tool `{call['name']}` returned non-JSON: {result}") # Fallback for non-JSON results
|
453 |
+
|
454 |
+
st.session_state.tool_call_results = tool_results
|
455 |
+
# Optionally: Send results back to LLM for final summary (requires multi-turn agent)
|
456 |
+
else:
|
457 |
+
st.error("Analysis failed. Please check the input data or try again.")
|
458 |
+
|
459 |
+
# --- Display Analysis Results ---
|
460 |
+
if st.session_state.analysis_complete and st.session_state.analysis_result:
|
461 |
+
st.divider()
|
462 |
+
st.header("π Analysis & Recommendations")
|
463 |
+
|
464 |
+
res = st.session_state.analysis_result
|
465 |
+
|
466 |
+
# Layout columns for better readability
|
467 |
+
col_assessment, col_plan = st.columns(2)
|
468 |
+
|
469 |
+
with col_assessment:
|
470 |
+
st.subheader("π Assessment")
|
471 |
+
st.write(res.get("assessment", "N/A"))
|
472 |
+
|
473 |
+
st.subheader("π€ Differential Diagnosis")
|
474 |
+
ddx = res.get("differential_diagnosis", [])
|
475 |
+
if ddx:
|
476 |
+
for item in ddx:
|
477 |
+
likelihood = item.get('likelihood', 'Unknown').capitalize()
|
478 |
+
icon = "π₯" if likelihood=="High" else ("π₯" if likelihood=="Medium" else "π₯")
|
479 |
+
with st.expander(f"{icon} {item.get('diagnosis', 'Unknown Diagnosis')} ({likelihood} Likelihood)", expanded=(likelihood=="High")):
|
480 |
+
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
|
481 |
+
else:
|
482 |
+
st.info("No differential diagnosis provided.")
|
483 |
+
|
484 |
+
st.subheader("π¨ Risk Assessment")
|
485 |
+
risk = res.get("risk_assessment", {})
|
486 |
+
flags = risk.get("identified_red_flags", []) + [f.replace("Red Flag: ", "") for f in st.session_state.red_flags] # Combine AI and initial flags
|
487 |
+
if flags:
|
488 |
+
st.warning(f"**Identified Red Flags:** {', '.join(flags)}")
|
489 |
+
else:
|
490 |
+
st.success("No immediate red flags identified by AI in this analysis.")
|
491 |
+
|
492 |
+
if risk.get("immediate_concerns"):
|
493 |
+
st.warning(f"**Immediate Concerns:** {', '.join(risk.get('immediate_concerns'))}")
|
494 |
+
if risk.get("potential_complications"):
|
495 |
+
st.info(f"**Potential Complications:** {', '.join(risk.get('potential_complications'))}")
|
496 |
+
|
497 |
+
|
498 |
+
with col_plan:
|
499 |
+
st.subheader("π Recommended Plan")
|
500 |
+
plan = res.get("recommended_plan", {})
|
501 |
+
|
502 |
+
st.markdown("**Investigations:**")
|
503 |
+
if plan.get("investigations"):
|
504 |
+
st.markdown("\n".join([f"- {inv}" for inv in plan.get("investigations")]))
|
505 |
+
else: st.markdown("_None suggested._")
|
506 |
+
|
507 |
+
st.markdown("**Therapeutics:**")
|
508 |
+
if plan.get("therapeutics"):
|
509 |
+
st.markdown("\n".join([f"- {thx}" for thx in plan.get("therapeutics")]))
|
510 |
+
else: st.markdown("_None suggested._")
|
511 |
+
|
512 |
+
st.markdown("**Consultations:**")
|
513 |
+
if plan.get("consultations"):
|
514 |
+
st.markdown("\n".join([f"- {con}" for con in plan.get("consultations")]))
|
515 |
+
else: st.markdown("_None suggested._")
|
516 |
+
|
517 |
+
st.markdown("**Patient Education:**")
|
518 |
+
if plan.get("patient_education"):
|
519 |
+
st.markdown("\n".join([f"- {edu}" for edu in plan.get("patient_education")]))
|
520 |
+
else: st.markdown("_None specified._")
|
521 |
+
|
522 |
+
# Display Rationale and Interaction Summary below the columns
|
523 |
+
st.subheader("π§ AI Rationale & Checks")
|
524 |
+
with st.expander("Show AI Reasoning Summary", expanded=False):
|
525 |
+
st.write(res.get("rationale_summary", "No rationale summary provided."))
|
526 |
+
|
527 |
+
interaction_summary = res.get("interaction_check_summary", "")
|
528 |
+
if interaction_summary: # Only show if interaction check was relevant/performed
|
529 |
+
with st.expander("Drug Interaction Check Summary", expanded=True):
|
530 |
+
st.write(interaction_summary)
|
531 |
+
# Also show detailed results from the tool call itself if available
|
532 |
+
for tool_res in st.session_state.tool_call_results:
|
533 |
+
if tool_res['name'] == 'check_drug_interactions':
|
534 |
+
try:
|
535 |
+
data = json.loads(tool_res['output'])
|
536 |
+
if data.get('warnings'):
|
537 |
+
st.warning("Interaction Details:")
|
538 |
+
for warn in data['warnings']:
|
539 |
+
st.caption(f"- {warn}")
|
540 |
+
else:
|
541 |
+
st.success("Interaction Details: " + data.get('message', 'Check complete.'))
|
542 |
+
except: pass # Ignore parsing errors here
|
543 |
+
|
544 |
+
# Display raw JSON if needed for debugging
|
545 |
+
with st.expander("Show Raw AI Output (JSON)"):
|
546 |
+
st.json(res)
|
547 |
+
|
548 |
+
st.divider()
|
549 |
+
st.success("Analysis Complete.")
|
550 |
+
|
551 |
+
# Disclaimer
|
552 |
+
st.markdown("---")
|
553 |
+
st.warning(
|
554 |
+
"""**Disclaimer:** SynapseAI is an AI assistant for clinical decision support and does not replace professional medical judgment.
|
555 |
+
All outputs should be critically reviewed by a qualified healthcare provider before making any clinical decisions.
|
556 |
+
Verify all information, especially dosages and interactions, independently."""
|
557 |
+
)
|
558 |
+
|
559 |
|
560 |
if __name__ == "__main__":
|
561 |
main()
|