mgbam commited on
Commit
8e9de1e
·
verified ·
1 Parent(s): 93f53ae

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +444 -287
agent.py CHANGED
@@ -1,11 +1,11 @@
1
- # agent.py
2
- import requests
3
- import json
4
- import re
5
  import os
6
- import operator
 
 
7
  import traceback
 
8
  from functools import lru_cache
 
9
 
10
  from langchain_groq import ChatGroq
11
  from langchain_community.tools.tavily_search import TavilySearchResults
@@ -15,333 +15,490 @@ from langchain_core.tools import tool
15
  from langgraph.prebuilt import ToolExecutor
16
  from langgraph.graph import StateGraph, END
17
 
18
- from typing import Optional, List, Dict, Any, TypedDict, Annotated
19
 
20
- # --- Environment Variable Loading ---
21
- # Keys are primarily used here, but checked in app.py for UI feedback
22
  UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
23
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
24
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
25
 
26
- # --- Configuration & Constants ---
27
  AGENT_MODEL_NAME = "llama3-70b-8192"
28
  AGENT_TEMPERATURE = 0.1
29
  MAX_SEARCH_RESULTS = 3
30
 
31
- class ClinicalPrompts:
32
- # The comprehensive system prompt defining agent behavior
33
- SYSTEM_PROMPT = """
34
- You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation.
35
- Your goal is to support healthcare professionals by analyzing patient data, providing differential diagnoses, suggesting evidence-based management plans, and identifying risks according to current standards of care.
36
-
37
- **Core Directives for this Conversation:**
38
- 1. **Analyze Sequentially:** Process information turn-by-turn. Base your responses on the *entire* conversation history.
39
- 2. **Seek Clarity:** If the provided information is insufficient or ambiguous for a safe assessment, CLEARLY STATE what specific additional information or clarification is needed. Do NOT guess or make unsafe assumptions.
40
- 3. **Structured Assessment (When Ready):** When you have sufficient information and have performed necessary checks (like interactions, guideline searches), provide a comprehensive assessment using the following JSON structure. Output this JSON structure as the primary content of your response when you are providing the full analysis. Do NOT output incomplete JSON. If you need to ask a question or perform a tool call first, do that instead of outputting this structure.
41
- ```json
42
- {
43
- "assessment": "Concise summary of the patient's presentation and key findings based on the conversation.",
44
- "differential_diagnosis": [
45
- {"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence from conversation..."},
46
- {"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
47
- {"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
48
- ],
49
- "risk_assessment": {
50
- "identified_red_flags": ["List any triggered red flags based on input and analysis"],
51
- "immediate_concerns": ["Specific urgent issues requiring attention (e.g., sepsis risk, ACS rule-out)"],
52
- "potential_complications": ["Possible future issues based on presentation"]
53
- },
54
- "recommended_plan": {
55
- "investigations": ["List specific lab tests or imaging required. Use 'order_lab_test' tool."],
56
- "therapeutics": ["Suggest specific treatments or prescriptions. Use 'prescribe_medication' tool. MUST check interactions first using 'check_drug_interactions'."],
57
- "consultations": ["Recommend specialist consultations if needed."],
58
- "patient_education": ["Key points for patient communication."]
59
- },
60
- "rationale_summary": "Justification for assessment/plan. **Crucially, if relevant (e.g., ACS, sepsis, common infections), use 'tavily_search_results' to find and cite current clinical practice guidelines (e.g., 'latest ACC/AHA chest pain guidelines 202X', 'Surviving Sepsis Campaign guidelines') supporting your recommendations.** Include summary of guideline findings here.",
61
- "interaction_check_summary": "Summary of findings from 'check_drug_interactions' if performed."
62
- }
63
- ```
64
- 4. **Safety First - Interactions:** BEFORE suggesting a new prescription via `prescribe_medication`, you MUST FIRST use `check_drug_interactions` in a preceding or concurrent tool call. Report the findings from the interaction check. If significant interactions exist, modify the plan or state the contraindication clearly.
65
- 5. **Safety First - Red Flags:** Use the `flag_risk` tool IMMEDIATELY if critical red flags requiring urgent action are identified at any point in the conversation.
66
- 6. **Tool Use:** Employ tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) logically within the conversational flow. Wait for tool results before proceeding if the result is needed for the next step (e.g., wait for interaction check before confirming prescription in the structured JSON).
67
- 7. **Evidence & Guidelines:** Actively use `tavily_search_results` not just for general knowledge, but specifically to query for and incorporate **current clinical practice guidelines** relevant to the patient's presentation (e.g., chest pain, shortness of breath, suspected infection). Summarize findings in the `rationale_summary` when providing the structured output.
68
- 8. **Conciseness & Flow:** Be medically accurate and concise. Use standard terminology. Respond naturally in conversation (asking questions, acknowledging info) until ready for the full structured JSON output.
69
- """
70
-
71
- # --- API Constants & Helper Functions ---
72
  UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
73
  RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
74
  OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  @lru_cache(maxsize=256)
77
  def get_rxcui(drug_name: str) -> Optional[str]:
78
- """Uses RxNorm API to find the RxCUI for a given drug name."""
79
- if not drug_name or not isinstance(drug_name, str): return None; drug_name = drug_name.strip();
80
- if not drug_name: return None; print(f"RxNorm Lookup for: '{drug_name}'");
81
- try: # Try direct lookup first
82
- params = {"name": drug_name, "search": 1}; response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
83
- if data and "idGroup" in data and "rxnormId" in data["idGroup"]: rxcui = data["idGroup"]["rxnormId"][0]; print(f" Found RxCUI: {rxcui} for '{drug_name}'"); return rxcui
84
- else: # Fallback to /drugs search
85
- params = {"name": drug_name}; response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
86
- if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
87
- for group in data["drugGroup"]["conceptGroup"]:
88
- if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
89
- if "conceptProperties" in group and group["conceptProperties"]: rxcui = group["conceptProperties"][0].get("rxcui");
90
- if rxcui: print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'"); return rxcui
91
- print(f" RxCUI not found for '{drug_name}'."); return None
92
- except requests.exceptions.RequestException as e: print(f" Error fetching RxCUI for '{drug_name}': {e}"); return None
93
- except json.JSONDecodeError as e: print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}"); return None
94
- except Exception as e: print(f" Unexpected error in get_rxcui for '{drug_name}': {e}"); return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  @lru_cache(maxsize=128)
97
- def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
98
- """Fetches drug label information from OpenFDA using RxCUI or drug name."""
99
- if not rxcui and not drug_name: return None; print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}"); search_terms = []
100
- if rxcui: search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
101
- if drug_name: search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
102
- search_query = " OR ".join(search_terms); params = {"search": search_query, "limit": 1};
 
 
 
 
 
 
 
 
 
 
 
 
103
  try:
104
- response = requests.get(OPENFDA_API_BASE, params=params, timeout=15); response.raise_for_status(); data = response.json();
105
- if data and "results" in data and data["results"]: print(f" Found OpenFDA label for query: {search_query}"); return data["results"][0]
106
- print(f" No OpenFDA label found for query: {search_query}"); return None
107
- except requests.exceptions.RequestException as e: print(f" Error fetching OpenFDA label: {e}"); return None
108
- except json.JSONDecodeError as e: print(f" Error decoding OpenFDA JSON response: {e}"); return None
109
- except Exception as e: print(f" Unexpected error in get_openfda_label: {e}"); return None
110
-
111
- def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
112
- """ Case-insensitive search for any search_term within a list of text strings. Returns snippets. """
113
- found_snippets = [];
114
- if not text_list or not search_terms: return found_snippets; search_terms_lower = [str(term).lower() for term in search_terms if term];
115
- for text_item in text_list:
116
- if not isinstance(text_item, str): continue; text_item_lower = text_item.lower();
117
- for term in search_terms_lower:
118
- if term in text_item_lower:
119
- start_index = text_item_lower.find(term); snippet_start = max(0, start_index - 50); snippet_end = min(len(text_item), start_index + len(term) + 100); snippet = text_item[snippet_start:snippet_end];
120
- snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, count=1, flags=re.IGNORECASE) # Highlight match
121
- found_snippets.append(f"...{snippet}...")
122
- break # Only report first match per text item
123
- return found_snippets
124
-
125
-
126
- # --- Clinical Helper Functions ---
127
- def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
128
- """Parses BP string like '120/80' into (systolic, diastolic) integers."""
129
- if not isinstance(bp_string, str): return None
130
- match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
131
- if match: return int(match.group(1)), int(match.group(2))
132
  return None
133
 
134
- def check_red_flags(patient_data: dict) -> List[str]:
135
- """Checks patient data against predefined red flags."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  flags = []
137
- if not patient_data: return flags
138
- symptoms = patient_data.get("hpi", {}).get("symptoms", [])
 
 
139
  vitals = patient_data.get("vitals", {})
140
- history = patient_data.get("pmh", {}).get("conditions", "")
141
- symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
142
-
143
- # Symptom Flags
144
- if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported.")
145
- if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported.")
146
- if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported.")
147
- if "sudden vision loss" in symptoms_lower: flags.append("Red Flag: Sudden Vision Loss reported.")
148
- if "weakness on one side" in symptoms_lower: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
149
- if "hemoptysis" in symptoms_lower: flags.append("Red Flag: Hemoptysis (coughing up blood).")
150
- if "syncope" in symptoms_lower: flags.append("Red Flag: Syncope (fainting).")
151
-
152
- # Vital Sign Flags
153
- if vitals:
154
- temp = vitals.get("temp_c"); hr = vitals.get("hr_bpm"); rr = vitals.get("rr_rpm")
155
- spo2 = vitals.get("spo2_percent"); bp_str = vitals.get("bp_mmhg")
156
- if temp is not None and temp >= 38.5: flags.append(f"Red Flag: Fever ({temp}°C).")
157
- if hr is not None and hr >= 120: flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
158
- if hr is not None and hr <= 50: flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
159
- if rr is not None and rr >= 24: flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
160
- if spo2 is not None and spo2 <= 92: flags.append(f"Red Flag: Hypoxia ({spo2}%).")
161
- if bp_str:
162
- bp = parse_bp(bp_str)
163
- if bp:
164
- if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
165
- if bp[0] <= 90 or bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
166
-
167
- # History Flags
168
- if history and isinstance(history, str):
169
- history_lower = history.lower()
170
- if "history of mi" in history_lower and "chest pain" in symptoms_lower: flags.append("Red Flag: History of MI with current Chest Pain.")
171
- if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower: flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
172
-
173
- return list(set(flags)) # Unique flags
174
-
175
- def format_patient_data_for_prompt(data: dict) -> str:
176
- """Formats the patient dictionary into a readable string for the LLM."""
177
- if not data: return "No patient data provided."; prompt_str = "";
178
- for key, value in data.items(): section_title = key.replace('_', ' ').title();
179
- if isinstance(value, dict) and value: has_content = any(sub_value for sub_value in value.values());
180
- if has_content: prompt_str += f"**{section_title}:**\n";
181
- for sub_key, sub_value in value.items():
182
- if sub_value: prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
183
- elif isinstance(value, list) and value: prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
184
- elif value and not isinstance(value, dict): prompt_str += f"**{section_title}:** {value}\n";
185
- return prompt_str.strip()
186
-
187
-
188
- # --- Tool Definitions ---
189
- class LabOrderInput(BaseModel): test_name: str = Field(...); reason: str = Field(...); priority: str = Field("Routine")
190
- class PrescriptionInput(BaseModel): medication_name: str = Field(...); dosage: str = Field(...); route: str = Field(...); frequency: str = Field(...); duration: str = Field("As directed"); reason: str = Field(...)
191
- class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...); current_medications: Optional[List[str]] = Field(None); allergies: Optional[List[str]] = Field(None)
192
- class FlagRiskInput(BaseModel): risk_description: str = Field(...); urgency: str = Field("High")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
 
194
  @tool("order_lab_test", args_schema=LabOrderInput)
195
  def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
196
- print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}"); return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})
 
 
 
 
 
 
 
197
  @tool("prescribe_medication", args_schema=PrescriptionInput)
198
- def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
199
- print(f"Executing prescribe_medication: {medication_name} {dosage}..."); return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
  @tool("check_drug_interactions", args_schema=InteractionCheckInput)
201
- def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
202
- print(f"\n--- Executing REAL check_drug_interactions ---"); print(f"Checking potential prescription: '{potential_prescription}'"); warnings = []; potential_med_lower = potential_prescription.lower().strip();
203
- current_meds_list = current_medications or []; allergies_list = allergies or []; current_med_names_lower = [];
204
- for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", str(med));
205
- if match: current_med_names_lower.append(match.group(1).lower());
206
- allergies_lower = [str(a).lower().strip() for a in allergies_list if a]; print(f" Against Current Meds (names): {current_med_names_lower}"); print(f" Against Allergies: {allergies_lower}");
207
- print(f" Step 1: Normalizing '{potential_prescription}'..."); potential_rxcui = get_rxcui(potential_prescription); potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription);
208
- if not potential_rxcui and not potential_label: warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.");
209
- print(" Step 2: Performing Allergy Check...");
210
- for allergy in allergies_lower:
211
- if allergy == potential_med_lower: warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.");
212
- elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.");
213
- elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.");
214
- elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.");
215
- if potential_label: contraindications = potential_label.get("contraindications"); warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings");
216
- if contraindications: allergy_mentions_ci = search_text_list(contraindications, allergies_lower);
217
- if allergy_mentions_ci: warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}");
218
- if warnings_section: allergy_mentions_warn = search_text_list(warnings_section, allergies_lower);
219
- if allergy_mentions_warn: warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}");
220
- print(" Step 3: Performing Drug-Drug Interaction Check...");
221
- if potential_rxcui or potential_label:
222
- for current_med_name in current_med_names_lower:
223
- if not current_med_name or current_med_name == potential_med_lower: continue; print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'..."); current_rxcui = get_rxcui(current_med_name); current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name); search_terms_for_current = [current_med_name];
224
- if current_rxcui: search_terms_for_current.append(current_rxcui); search_terms_for_potential = [potential_med_lower];
225
- if potential_rxcui: search_terms_for_potential.append(potential_rxcui); interaction_found_flag = False;
226
- if potential_label and potential_label.get("drug_interactions"): interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current);
227
- if interaction_mentions: warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); interaction_found_flag = True;
228
- if current_label and current_label.get("drug_interactions") and not interaction_found_flag: interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential);
229
- if interaction_mentions: warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}");
230
- else: warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.");
231
- final_warnings = list(set(warnings)); status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear";
232
- if not final_warnings: status = "clear"; message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."; print(f"--- Interaction Check Complete ---");
233
- return json.dumps({"status": status, "message": message, "warnings": final_warnings})
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  @tool("flag_risk", args_schema=FlagRiskInput)
235
  def flag_risk(risk_description: str, urgency: str) -> str:
236
- print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}"); # UI part in app.py
237
- return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})
 
 
 
 
 
238
  search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
239
  all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
240
 
241
- # --- LangGraph State & Nodes ---
242
- class AgentState(TypedDict): messages: Annotated[list[Any], operator.add]; patient_data: Optional[dict]; summary: Optional[str]; interaction_warnings: Optional[List[str]]
243
 
 
 
 
 
 
 
 
 
244
  llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME)
245
  model_with_tools = llm.bind_tools(all_tools)
246
  tool_executor = ToolExecutor(all_tools)
247
 
248
- def agent_node(state: AgentState):
249
- print("\n---AGENT NODE---"); current_messages = state['messages'];
250
- if not current_messages or not isinstance(current_messages[0], SystemMessage): print("Prepending System Prompt."); current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages;
251
- print(f"Invoking LLM with {len(current_messages)} messages.");
252
- try: response = model_with_tools.invoke(current_messages); print(f"Agent Raw Response Type: {type(response)}");
253
- if hasattr(response, 'tool_calls') and response.tool_calls: print(f"Agent Response Tool Calls: {response.tool_calls}"); else: print("Agent Response: No tool calls.");
254
- except Exception as e: print(f"ERROR in agent_node: {e}"); traceback.print_exc(); error_message = AIMessage(content=f"Error: {e}"); return {"messages": [error_message]};
255
- return {"messages": [response]} # Only return messages
256
-
257
- def tool_node(state: AgentState):
258
- print("\n---TOOL NODE---"); tool_messages = []; last_message = state['messages'][-1]; interaction_warnings_found = [];
259
- if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): print("Warning: Tool node called unexpectedly."); return {"messages": [], "interaction_warnings": None};
260
- tool_calls = last_message.tool_calls; print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}"); prescriptions_requested = {}; interaction_checks_requested = {};
261
- for call in tool_calls: tool_name = call.get('name'); tool_args = call.get('args', {});
262
- if tool_name == 'prescribe_medication': med_name = tool_args.get('medication_name', '').lower();
263
- if med_name: prescriptions_requested[med_name] = call;
264
- elif tool_name == 'check_drug_interactions': potential_med = tool_args.get('potential_prescription', '').lower();
265
- if potential_med: interaction_checks_requested[potential_med] = call;
266
- valid_tool_calls_for_execution = []; blocked_ids = set();
267
- for med_name, prescribe_call in prescriptions_requested.items():
268
- if med_name not in interaction_checks_requested: print(f"**SAFETY VIOLATION (Agent): Prescribe '{med_name}' blocked - no interaction check requested.**"); error_msg = ToolMessage(content=json.dumps({"status": "error", "message": f"Interaction check needed for '{med_name}'."}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']); tool_messages.append(error_msg); blocked_ids.add(prescribe_call['id']);
269
- valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids];
270
- patient_data = state.get("patient_data", {}); patient_meds_full = patient_data.get("medications", {}).get("current", []); patient_allergies = patient_data.get("allergies", []);
271
- for call in valid_tool_calls_for_execution:
272
- if call['name'] == 'check_drug_interactions':
273
- if 'args' not in call: call['args'] = {}; call['args']['current_medications'] = patient_meds_full; call['args']['allergies'] = patient_allergies; print(f"Augmented interaction check args for call ID {call['id']}");
274
- if valid_tool_calls_for_execution: print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}");
275
- try: responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True);
276
- for call, resp in zip(valid_tool_calls_for_execution, responses): tool_call_id = call['id']; tool_name = call['name'];
277
- if isinstance(resp, Exception): error_type = type(resp).__name__; error_str = str(resp); print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}"); traceback.print_exc(); error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}); tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name));
278
- # ... Specific error check ...
279
- else:
280
- print(f"Tool '{tool_name}' executed."); content_str = str(resp); tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name));
281
- if tool_name == "check_drug_interactions": # Extract warnings
282
- try: result_data = json.loads(content_str);
283
- if result_data.get("status") == "warning" and result_data.get("warnings"): print(f" Interaction check returned warnings: {result_data['warnings']}"); interaction_warnings_found.extend(result_data["warnings"]);
284
- except Exception as e: print(f" Error processing interaction check result: {e}");
285
- except Exception as e: # Outer exception handling...
286
- print(f"CRITICAL TOOL NODE ERROR: {e}"); traceback.print_exc(); error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}); processed_ids = {msg.tool_call_id for msg in tool_messages}; [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) for call in valid_tool_calls_for_execution if call['id'] not in processed_ids];
287
- print(f"Returning {len(tool_messages)} tool messages. Warnings: {bool(interaction_warnings_found)}")
288
- return {"messages": tool_messages, "interaction_warnings": interaction_warnings_found or None} # Return messages AND warnings
289
-
290
- def reflection_node(state: AgentState):
291
- print("\n---REFLECTION NODE---")
292
- interaction_warnings = state.get("interaction_warnings")
293
- if not interaction_warnings: print("Warning: Reflection node called without warnings."); return {"messages": [], "interaction_warnings": None};
294
- print(f"Reviewing interaction warnings: {interaction_warnings}"); triggering_ai_message = None; relevant_tool_call_ids = set();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
  for msg in reversed(state['messages']):
296
- if isinstance(msg, ToolMessage) and msg.name == "check_drug_interactions": relevant_tool_call_ids.add(msg.tool_call_id);
297
- if isinstance(msg, AIMessage) and msg.tool_calls:
298
- if any(tc['id'] in relevant_tool_call_ids for tc in msg.tool_calls): triggering_ai_message = msg; break;
299
- if not triggering_ai_message: print("Error: Could not find triggering AI message for reflection."); return {"messages": [AIMessage(content="Internal Error: Reflection context missing.")], "interaction_warnings": None};
300
- original_plan_proposal_context = triggering_ai_message.content;
301
- reflection_prompt_text = f"""You are SynapseAI, performing a critical safety review...
302
- Previous Context:\n{original_plan_proposal_context}\n---\nInteraction Warnings:\n```json\n{json.dumps(interaction_warnings, indent=2)}\n```\n**CRITICAL REFLECTION STEP:** Analyze warnings, decide if revision is needed, respond ONLY about therapeutics revision based on these warnings."""
303
- reflection_messages = [SystemMessage(content="Perform focused safety review based on interaction warnings."), HumanMessage(content=reflection_prompt_text)];
304
- print("Invoking LLM for reflection...");
305
- try: reflection_response = llm.invoke(reflection_messages); print(f"Reflection Response: {reflection_response.content}"); final_ai_message = AIMessage(content=reflection_response.content);
306
- except Exception as e: print(f"ERROR during reflection: {e}"); traceback.print_exc(); final_ai_message = AIMessage(content=f"Error during safety reflection: {e}");
307
- return {"messages": [final_ai_message], "interaction_warnings": None} # Return reflection response, clear warnings
308
-
309
-
310
- # --- Graph Routing Logic ---
 
 
 
 
 
 
311
  def should_continue(state: AgentState) -> str:
312
- print("\n---ROUTING DECISION (Agent Output)---"); last_message = state['messages'][-1] if state['messages'] else None;
313
- if not isinstance(last_message, AIMessage): return "end_conversation_turn";
314
- if "Sorry, an internal error occurred" in last_message.content: return "end_conversation_turn";
315
- if getattr(last_message, 'tool_calls', None): return "continue_tools"; else: return "end_conversation_turn";
 
 
 
316
 
317
  def after_tools_router(state: AgentState) -> str:
318
- print("\n---ROUTING DECISION (After Tools)---");
319
- if state.get("interaction_warnings"): print("Routing: Warnings found -> Reflection"); return "reflect_on_warnings";
320
- else: print("Routing: No warnings -> Agent"); return "continue_to_agent";
 
321
 
322
- # --- ClinicalAgent Class ---
323
  class ClinicalAgent:
324
  def __init__(self):
325
- workflow = StateGraph(AgentState)
326
- workflow.add_node("agent", agent_node)
327
- workflow.add_node("tools", tool_node)
328
- workflow.add_node("reflection", reflection_node)
329
- workflow.set_entry_point("agent")
330
- workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
331
- workflow.add_conditional_edges("tools", after_tools_router, {"reflect_on_warnings": "reflection", "continue_to_agent": "agent"})
332
- workflow.add_edge("reflection", "agent")
333
- self.graph_app = workflow.compile()
334
- print("ClinicalAgent initialized and LangGraph compiled.")
 
 
 
 
 
335
 
336
  def invoke_turn(self, state: Dict) -> Dict:
337
- """Invokes the LangGraph app for one turn."""
338
- print(f"Invoking graph with state keys: {state.keys()}")
339
  try:
340
- final_state = self.graph_app.invoke(state, {"recursion_limit": 15})
341
- final_state.setdefault('summary', state.get('summary')) # Ensure keys exist
342
- final_state.setdefault('interaction_warnings', None)
343
- return final_state
344
  except Exception as e:
345
- print(f"CRITICAL ERROR during graph invocation: {type(e).__name__} - {e}"); traceback.print_exc();
346
- error_msg = AIMessage(content=f"Sorry, a critical error occurred during processing: {e}");
347
- return {"messages": state.get('messages', []) + [error_msg], "patient_data": state.get('patient_data'), "summary": state.get('summary'), "interaction_warnings": None}
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import re
3
+ import json
4
+ import requests
5
  import traceback
6
+ import operator
7
  from functools import lru_cache
8
+ from typing import Any, Dict, List, Optional, TypedDict, Annotated
9
 
10
  from langchain_groq import ChatGroq
11
  from langchain_community.tools.tavily_search import TavilySearchResults
 
15
  from langgraph.prebuilt import ToolExecutor
16
  from langgraph.graph import StateGraph, END
17
 
 
18
 
19
+ # --- Configuration & Constants ---
 
20
  UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
21
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
22
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
23
 
 
24
  AGENT_MODEL_NAME = "llama3-70b-8192"
25
  AGENT_TEMPERATURE = 0.1
26
  MAX_SEARCH_RESULTS = 3
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
29
  RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
30
  OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
31
 
32
+
33
+ class ClinicalPrompts:
34
+ SYSTEM_PROMPT = (
35
+ """
36
+ You are SynapseAI, an expert AI clinical assistant in an interactive consultation.
37
+ Analyze patient data, provide differential diagnoses, suggest management plans,
38
+ and identify risks according to current standards of care.
39
+
40
+ 1. Process information sequentially; use full conversation history.
41
+ 2. Ask for clarification if data is insufficient; do not guess.
42
+ 3. When ready, output a complete JSON assessment as specified.
43
+ 4. Before prescribing, run drug-interaction checks and report results.
44
+ 5. Flag urgent red flags immediately.
45
+ 6. Use tools logically; await results when needed.
46
+ 7. Query clinical guidelines via tavily_search_results and cite them.
47
+ 8. Be concise, accurate, and use standard terminology.
48
+ """
49
+ )
50
+
51
+
52
+ # --- Helper Functions ---
53
  @lru_cache(maxsize=256)
54
  def get_rxcui(drug_name: str) -> Optional[str]:
55
+ """Return RxNorm CUI for a given drug name."""
56
+ if not drug_name:
57
+ return None
58
+ name = drug_name.strip()
59
+ if not name:
60
+ return None
61
+
62
+ try:
63
+ # Primary lookup
64
+ params = {"name": name, "search": 1}
65
+ resp = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
66
+ resp.raise_for_status()
67
+ data = resp.json()
68
+ ids = data.get("idGroup", {}).get("rxnormId", [])
69
+ if ids:
70
+ return ids[0]
71
+
72
+ # Fallback lookup
73
+ params = {"name": name}
74
+ resp = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
75
+ resp.raise_for_status()
76
+ data = resp.json()
77
+ groups = data.get("drugGroup", {}).get("conceptGroup", [])
78
+ for grp in groups:
79
+ if grp.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
80
+ props = grp.get("conceptProperties", [])
81
+ if props:
82
+ return props[0].get("rxcui")
83
+ except Exception:
84
+ traceback.print_exc()
85
+ return None
86
+
87
 
88
  @lru_cache(maxsize=128)
89
+ def get_openfda_label(
90
+ rxcui: Optional[str] = None,
91
+ drug_name: Optional[str] = None
92
+ ) -> Optional[dict]:
93
+ """Fetch OpenFDA drug label by RxCUI or name."""
94
+ if not (rxcui or drug_name):
95
+ return None
96
+
97
+ terms = []
98
+ if rxcui:
99
+ terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
100
+ if drug_name:
101
+ name = drug_name.lower()
102
+ terms.append(f'(openfda.brand_name:"{name}" OR openfda.generic_name:"{name}")')
103
+
104
+ query = " OR ".join(terms)
105
+ params = {"search": query, "limit": 1}
106
+
107
  try:
108
+ resp = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
109
+ resp.raise_for_status()
110
+ data = resp.json()
111
+ results = data.get("results", [])
112
+ if results:
113
+ return results[0]
114
+ except Exception:
115
+ traceback.print_exc()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  return None
117
 
118
+
119
+ def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
120
+ """Return snippets where any term appears in texts."""
121
+ snippets = []
122
+ lowers = [t.lower() for t in terms if t]
123
+ for txt in texts or []:
124
+ if not isinstance(txt, str):
125
+ continue
126
+ low_txt = txt.lower()
127
+ for term in lowers:
128
+ idx = low_txt.find(term)
129
+ if idx >= 0:
130
+ start = max(0, idx - 50)
131
+ end = min(len(txt), idx + len(term) + 100)
132
+ snippet = txt[start:end]
133
+ snippet = re.sub(
134
+ f"({re.escape(term)})",
135
+ r"**\1**",
136
+ snippet,
137
+ count=1,
138
+ flags=re.IGNORECASE,
139
+ )
140
+ snippets.append(f"...{snippet}...")
141
+ break
142
+ return snippets
143
+
144
+
145
+ def parse_bp(bp_str: str) -> Optional[tuple[int, int]]:
146
+ """Parse blood pressure string 'systolic/diastolic'."""
147
+ match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_str or "")
148
+ if match:
149
+ return int(match.group(1)), int(match.group(2))
150
+ return None
151
+
152
+
153
+ def check_red_flags(patient_data: Dict) -> List[str]:
154
+ """Identify critical red flags from patient data."""
155
  flags = []
156
+ if not patient_data:
157
+ return flags
158
+
159
+ symptoms = [s.lower() for s in patient_data.get("hpi", {}).get("symptoms", [])]
160
  vitals = patient_data.get("vitals", {})
161
+ history = patient_data.get("pmh", {}).get("conditions", "").lower()
162
+
163
+ # Symptom-based flags
164
+ mapping = {
165
+ "chest pain": "Chest Pain reported.",
166
+ "shortness of breath": "Shortness of Breath reported.",
167
+ "severe headache": "Severe Headache reported.",
168
+ "sudden vision loss": "Sudden Vision Loss reported.",
169
+ "weakness on one side": "Unilateral Weakness reported (potential stroke).",
170
+ "hemoptysis": "Hemoptysis (coughing up blood).",
171
+ "syncope": "Syncope (fainting).",
172
+ }
173
+ for term, desc in mapping.items():
174
+ if term in symptoms:
175
+ flags.append(f"Red Flag: {desc}")
176
+
177
+ # Vital sign flags
178
+ temp = vitals.get("temp_c")
179
+ hr = vitals.get("hr_bpm")
180
+ rr = vitals.get("rr_rpm")
181
+ spo2 = vitals.get("spo2_percent")
182
+ bp = parse_bp(vitals.get("bp_mmhg", ""))
183
+
184
+ if temp and temp >= 38.5:
185
+ flags.append(f"Red Flag: Fever ({temp}°C).")
186
+ if hr:
187
+ if hr >= 120:
188
+ flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
189
+ if hr <= 50:
190
+ flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
191
+ if rr and rr >= 24:
192
+ flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
193
+ if spo2 and spo2 <= 92:
194
+ flags.append(f"Red Flag: Hypoxia ({spo2}%).")
195
+ if bp:
196
+ sys, dia = bp
197
+ if sys >= 180 or dia >= 110:
198
+ flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {sys}/{dia} mmHg).")
199
+ if sys <= 90 or dia <= 60:
200
+ flags.append(f"Red Flag: Hypotension (BP: {sys}/{dia} mmHg).")
201
+
202
+ # History-based flags
203
+ if "history of mi" in history and "chest pain" in symptoms:
204
+ flags.append("Red Flag: History of MI with current Chest Pain.")
205
+ if "history of dvt/pe" in history and "shortness of breath" in symptoms:
206
+ flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
207
+
208
+ return list(set(flags))
209
+
210
+
211
+ def format_patient_data_for_prompt(data: Dict) -> str:
212
+ """Convert patient data dict into a human-readable prompt section."""
213
+ if not data:
214
+ return "No patient data provided."
215
+
216
+ sections = []
217
+ for key, val in data.items():
218
+ title = key.replace("_", " ").title()
219
+ if isinstance(val, dict) and any(val.values()):
220
+ lines = [f"**{title}:**"]
221
+ for subk, subv in val.items():
222
+ if subv:
223
+ lines.append(f"- {subk.replace('_', ' ').title()}: {subv}")
224
+ sections.append("\n".join(lines))
225
+ elif isinstance(val, list) and val:
226
+ sections.append(f"**{title}:** {', '.join(map(str, val))}")
227
+ elif val:
228
+ sections.append(f"**{title}:** {val}")
229
+
230
+ return "\n\n".join(sections)
231
+
232
+
233
+ # --- Tool Schemas & Definitions ---
234
+ class LabOrderInput(BaseModel):
235
+ test_name: str = Field(...)
236
+ reason: str = Field(...)
237
+ priority: str = Field("Routine")
238
+
239
+
240
+ class PrescriptionInput(BaseModel):
241
+ medication_name: str = Field(...)
242
+ dosage: str = Field(...)
243
+ route: str = Field(...)
244
+ frequency: str = Field(...)
245
+ duration: str = Field("As directed")
246
+ reason: str = Field(...)
247
+
248
+
249
+ class InteractionCheckInput(BaseModel):
250
+ potential_prescription: str = Field(...)
251
+ current_medications: Optional[List[str]] = Field(None)
252
+ allergies: Optional[List[str]] = Field(None)
253
+
254
+
255
+ class FlagRiskInput(BaseModel):
256
+ risk_description: str = Field(...)
257
+ urgency: str = Field("High")
258
+
259
 
260
  @tool("order_lab_test", args_schema=LabOrderInput)
261
  def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
262
+ result = {
263
+ "status": "success",
264
+ "message": f"Lab Ordered: {test_name} ({priority})",
265
+ "details": f"Reason: {reason}"
266
+ }
267
+ return json.dumps(result)
268
+
269
+
270
  @tool("prescribe_medication", args_schema=PrescriptionInput)
271
+ def prescribe_medication(
272
+ medication_name: str,
273
+ dosage: str,
274
+ route: str,
275
+ frequency: str,
276
+ duration: str,
277
+ reason: str
278
+ ) -> str:
279
+ result = {
280
+ "status": "success",
281
+ "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
282
+ "details": f"Duration: {duration}. Reason: {reason}"
283
+ }
284
+ return json.dumps(result)
285
+
286
+
287
  @tool("check_drug_interactions", args_schema=InteractionCheckInput)
288
+ def check_drug_interactions(
289
+ potential_prescription: str,
290
+ current_medications: Optional[List[str]] = None,
291
+ allergies: Optional[List[str]] = None
292
+ ) -> str:
293
+ warnings: List[str] = []
294
+ presc_lower = potential_prescription.lower().strip()
295
+ current = [m.lower().strip() for m in (current_medications or [])]
296
+ allergy_list = [a.lower().strip() for a in (allergies or [])]
297
+
298
+ # Normalize and lookup
299
+ rxcui = get_rxcui(potential_prescription)
300
+ label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
301
+ if not rxcui and not label:
302
+ warnings.append(f"INFO: Could not identify '{potential_prescription}'.")
303
+
304
+ # Allergy checks
305
+ for alg in allergy_list:
306
+ if alg == presc_lower:
307
+ warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{alg}'.")
308
+ # Additional cross-allergy logic...
309
+
310
+ # Drug-drug interactions
311
+ if rxcui or label:
312
+ for med in current:
313
+ if med and med != presc_lower:
314
+ # interaction search on label sections
315
+ interactions = []
316
+ if label and label.get("drug_interactions"):
317
+ interactions = search_text_list(label["drug_interactions"], [med])
318
+ if interactions:
319
+ warnings.append(
320
+ f"Potential Interaction: '{potential_prescription}' & '{med}'. Snippets: {'; '.join(interactions)}"
321
+ )
322
+ else:
323
+ warnings.append(f"INFO: Skipped interaction check for '{potential_prescription}'.")
324
+
325
+ status = "warning" if warnings else "clear"
326
+ message = (
327
+ f"Interaction/Allergy check for '{potential_prescription}': {len(warnings)} issue(s)."
328
+ if warnings else
329
+ f"No major issues for '{potential_prescription}'."
330
+ )
331
+ return json.dumps({"status": status, "message": message, "warnings": warnings})
332
+
333
+
334
  @tool("flag_risk", args_schema=FlagRiskInput)
335
  def flag_risk(risk_description: str, urgency: str) -> str:
336
+ return json.dumps({
337
+ "status": "flagged",
338
+ "message": f"Risk '{risk_description}' flagged with {urgency} urgency."
339
+ })
340
+
341
+
342
+ # Initialize search tool and tool list
343
  search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
344
  all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
345
 
 
 
346
 
347
+ # --- LangGraph Setup ---
348
+ class AgentState(TypedDict):
349
+ messages: Annotated[List[Any], operator.add]
350
+ patient_data: Optional[Dict]
351
+ summary: Optional[str]
352
+ interaction_warnings: Optional[List[str]]
353
+
354
+ # LLM and executor
355
  llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME)
356
  model_with_tools = llm.bind_tools(all_tools)
357
  tool_executor = ToolExecutor(all_tools)
358
 
359
+
360
+ def agent_node(state: AgentState) -> Dict:
361
+ """Invoke the LLM agent node."""
362
+ msgs = state['messages'][:]
363
+ if not msgs or not isinstance(msgs[0], SystemMessage):
364
+ msgs.insert(0, SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT))
365
+
366
+ try:
367
+ response = model_with_tools.invoke(msgs)
368
+ return {"messages": [response]}
369
+ except Exception as e:
370
+ traceback.print_exc()
371
+ err = AIMessage(content=f"Error: {e}")
372
+ return {"messages": [err]}
373
+
374
+
375
+ def tool_node(state: AgentState) -> Dict:
376
+ """Execute any pending tool calls from the last AI message."""
377
+ last = state['messages'][-1]
378
+ if not isinstance(last, AIMessage) or not getattr(last, 'tool_calls', None):
379
+ return {"messages": [], "interaction_warnings": None}
380
+
381
+ calls = last.tool_calls
382
+ # Enforce safety: require interaction check before prescribing
383
+ blocked_ids = set()
384
+ for call in calls:
385
+ if call['name'] == 'prescribe_medication':
386
+ # block if no interaction check for this med
387
+ med = call['args'].get('medication_name', '').lower()
388
+ if not any(
389
+ c['name'] == 'check_drug_interactions' and
390
+ c['args'].get('potential_prescription', '').lower() == med
391
+ for c in calls
392
+ ):
393
+ blocked_ids.add(call['id'])
394
+
395
+ valid_calls = [c for c in calls if c['id'] not in blocked_ids]
396
+
397
+ # Augment interaction checks with patient data
398
+ for c in valid_calls:
399
+ if c['name'] == 'check_drug_interactions':
400
+ c['args']['current_medications'] = state.get('patient_data', {}).get('medications', {}).get('current', [])
401
+ c['args']['allergies'] = state.get('patient_data', {}).get('allergies', [])
402
+
403
+ results = []
404
+ warnings: List[str] = []
405
+ try:
406
+ responses = tool_executor.batch(valid_calls, return_exceptions=True)
407
+ for call, resp in zip(valid_calls, responses):
408
+ if isinstance(resp, Exception):
409
+ traceback.print_exc()
410
+ content = json.dumps({"status": "error", "message": str(resp)})
411
+ else:
412
+ content = str(resp)
413
+ if call['name'] == 'check_drug_interactions':
414
+ data = json.loads(content)
415
+ if data.get('warnings'):
416
+ warnings.extend(data['warnings'])
417
+ results.append(ToolMessage(content=content, tool_call_id=call['id'], name=call['name']))
418
+ except Exception as e:
419
+ traceback.print_exc()
420
+ content = json.dumps({"status": "error", "message": str(e)})
421
+ for c in valid_calls:
422
+ results.append(ToolMessage(content=content, tool_call_id=c['id'], name=c['name']))
423
+
424
+ return {"messages": results, "interaction_warnings": warnings or None}
425
+
426
+
427
+ def reflection_node(state: AgentState) -> Dict:
428
+ """Review interaction warnings and adjust plan if needed."""
429
+ warnings = state.get('interaction_warnings')
430
+ if not warnings:
431
+ return {"messages": [], "interaction_warnings": None}
432
+
433
+ # Find the AI message that triggered the warnings
434
+ trigger_id = None
435
  for msg in reversed(state['messages']):
436
+ if isinstance(msg, ToolMessage) and msg.name == 'check_drug_interactions':
437
+ trigger_id = msg.tool_call_id
438
+ break
439
+
440
+ prompt = (
441
+ f"Interaction warnings:\n{json.dumps(warnings, indent=2)}\n"
442
+ "Provide a revised therapeutics plan addressing these issues."
443
+ )
444
+ msgs = [
445
+ SystemMessage(content="Safety reflection on drug interactions."),
446
+ HumanMessage(content=prompt)
447
+ ]
448
+
449
+ try:
450
+ resp = llm.invoke(msgs)
451
+ return {"messages": [AIMessage(content=resp.content)], "interaction_warnings": None}
452
+ except Exception as e:
453
+ traceback.print_exc()
454
+ return {"messages": [AIMessage(content=f"Reflection error: {e}")], "interaction_warnings": None}
455
+
456
+
457
  def should_continue(state: AgentState) -> str:
458
+ last = state['messages'][-1] if state['messages'] else None
459
+ if not isinstance(last, AIMessage):
460
+ return 'end_conversation_turn'
461
+ if getattr(last, 'tool_calls', None):
462
+ return 'continue_tools'
463
+ return 'end_conversation_turn'
464
+
465
 
466
  def after_tools_router(state: AgentState) -> str:
467
+ if state.get('interaction_warnings'):
468
+ return 'reflect_on_warnings'
469
+ return 'continue_to_agent'
470
+
471
 
 
472
  class ClinicalAgent:
473
  def __init__(self):
474
+ graph = StateGraph(AgentState)
475
+ graph.add_node('agent', agent_node)
476
+ graph.add_node('tools', tool_node)
477
+ graph.add_node('reflection', reflection_node)
478
+ graph.set_entry_point('agent')
479
+ graph.add_conditional_edges(
480
+ 'agent', should_continue,
481
+ {'continue_tools': 'tools', 'end_conversation_turn': END}
482
+ )
483
+ graph.add_conditional_edges(
484
+ 'tools', after_tools_router,
485
+ {'reflect_on_warnings': 'reflection', 'continue_to_agent': 'agent'}
486
+ )
487
+ graph.add_edge('reflection', 'agent')
488
+ self.app = graph.compile()
489
 
490
  def invoke_turn(self, state: Dict) -> Dict:
 
 
491
  try:
492
+ result = self.app.invoke(state, {'recursion_limit': 15})
493
+ result.setdefault('summary', state.get('summary'))
494
+ result.setdefault('interaction_warnings', None)
495
+ return result
496
  except Exception as e:
497
+ traceback.print_exc()
498
+ err = AIMessage(content=f"Critical error: {e}")
499
+ return {
500
+ 'messages': state.get('messages', []) + [err],
501
+ 'patient_data': state.get('patient_data'),
502
+ 'summary': state.get('summary'),
503
+ 'interaction_warnings': None
504
+ }