mgbam commited on
Commit
99a7bc0
Β·
verified Β·
1 Parent(s): 6b2d9f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +570 -217
app.py CHANGED
@@ -12,6 +12,7 @@ from dotenv import load_dotenv
12
  from langchain_groq import ChatGroq
13
  from langchain_community.tools.tavily_search import TavilySearchResults
14
  from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
 
15
  from langchain_core.pydantic_v1 import BaseModel, Field
16
  from langchain_core.tools import tool
17
  from langgraph.prebuilt import ToolExecutor
@@ -25,82 +26,146 @@ UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
25
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
26
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
27
  missing_keys = []
28
- if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
29
- if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
30
- if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
31
- if missing_keys: st.error(f"Missing API Key(s): {', '.join(missing_keys)}."); st.stop()
 
 
 
 
 
32
 
33
  # --- Configuration & Constants ---
34
- class ClinicalAppSettings: APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"; PAGE_LAYOUT = "wide"; MODEL_NAME = "llama3-70b-8192"; TEMPERATURE = 0.1; MAX_SEARCH_RESULTS = 3
35
- class ClinicalPrompts: SYSTEM_PROMPT = """
 
 
 
 
 
 
 
36
  You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY]
37
  """
38
 
39
  # --- API Helper Functions (get_rxcui, get_openfda_label, search_text_list) ---
40
- # ... (Keep these functions exactly as they were) ...
41
- UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"; RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"; OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
 
 
42
  @lru_cache(maxsize=256)
43
  def get_rxcui(drug_name: str) -> Optional[str]:
44
- if not drug_name or not isinstance(drug_name, str): return None; drug_name = drug_name.strip();
45
- if not drug_name: return None; print(f"RxNorm Lookup for: '{drug_name}'");
46
- try: # Try direct lookup first
47
- params = {"name": drug_name, "search": 1}; response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
48
- if data and "idGroup" in data and "rxnormId" in data["idGroup"]: rxcui = data["idGroup"]["rxnormId"][0]; print(f" Found RxCUI: {rxcui} for '{drug_name}'"); return rxcui
49
- else: # Fallback to /drugs search
50
- params = {"name": drug_name}; response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
52
  for group in data["drugGroup"]["conceptGroup"]:
53
  if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
54
- if "conceptProperties" in group and group["conceptProperties"]: rxcui = group["conceptProperties"][0].get("rxcui");
55
- if rxcui: print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'"); return rxcui
56
- print(f" RxCUI not found for '{drug_name}'."); return None
57
- except requests.exceptions.RequestException as e: print(f" Error fetching RxCUI for '{drug_name}': {e}"); return None
58
- except json.JSONDecodeError as e: print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}"); return None
59
- except Exception as e: print(f" Unexpected error in get_rxcui for '{drug_name}': {e}"); return None
 
 
 
 
 
 
 
 
 
 
 
60
  @lru_cache(maxsize=128)
61
  def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
62
- if not rxcui and not drug_name: return None; print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}"); search_terms = []
63
- if rxcui: search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
64
- if drug_name: search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
65
- search_query = " OR ".join(search_terms); params = {"search": search_query, "limit": 1};
 
 
 
 
 
 
66
  try:
67
- response = requests.get(OPENFDA_API_BASE, params=params, timeout=15); response.raise_for_status(); data = response.json();
68
- if data and "results" in data and data["results"]: print(f" Found OpenFDA label for query: {search_query}"); return data["results"][0]
69
- print(f" No OpenFDA label found for query: {search_query}"); return None
70
- except requests.exceptions.RequestException as e: print(f" Error fetching OpenFDA label: {e}"); return None
71
- except json.JSONDecodeError as e: print(f" Error decoding OpenFDA JSON response: {e}"); return None
72
- except Exception as e: print(f" Unexpected error in get_openfda_label: {e}"); return None
 
 
 
 
 
 
 
 
 
 
 
 
73
  def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
74
- found_snippets = [];
75
- if not text_list or not search_terms: return found_snippets; search_terms_lower = [str(term).lower() for term in search_terms if term];
 
 
76
  for text_item in text_list:
77
- if not isinstance(text_item, str): continue; text_item_lower = text_item.lower();
 
 
78
  for term in search_terms_lower:
79
  if term in text_item_lower:
80
- start_index = text_item_lower.find(term); snippet_start = max(0, start_index - 50); snippet_end = min(len(text_item), start_index + len(term) + 100); snippet = text_item[snippet_start:snippet_end];
81
- # Highlight first match for clarity
82
- snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, count=1, flags=re.IGNORECASE)
 
 
83
  found_snippets.append(f"...{snippet}...")
84
- break # Only report first match per text item
85
  return found_snippets
86
 
87
 
88
- # --- Other Helper Functions ---
89
  def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
90
- if not isinstance(bp_string, str): return None; match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip());
91
- if match: return int(match.group(1)), int(match.group(2)); return None
 
 
 
 
92
 
93
- # CORRECTED check_red_flags function
94
  def check_red_flags(patient_data: dict) -> List[str]:
95
- """Checks patient data against predefined red flags."""
96
  flags = []
97
- if not patient_data: return flags
 
98
  symptoms = patient_data.get("hpi", {}).get("symptoms", [])
99
  vitals = patient_data.get("vitals", {})
100
  history = patient_data.get("pmh", {}).get("conditions", "")
101
  symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
102
-
103
- # Symptom Flags (CORRECTED - Separate lines)
104
  if "chest pain" in symptoms_lower:
105
  flags.append("Red Flag: Chest Pain reported.")
106
  if "shortness of breath" in symptoms_lower:
@@ -115,260 +180,548 @@ def check_red_flags(patient_data: dict) -> List[str]:
115
  flags.append("Red Flag: Hemoptysis (coughing up blood).")
116
  if "syncope" in symptoms_lower:
117
  flags.append("Red Flag: Syncope (fainting).")
118
-
119
- # Vital Sign Flags
120
  if vitals:
121
- temp = vitals.get("temp_c"); hr = vitals.get("hr_bpm"); rr = vitals.get("rr_rpm")
122
- spo2 = vitals.get("spo2_percent"); bp_str = vitals.get("bp_mmhg")
123
- if temp is not None and temp >= 38.5: flags.append(f"Red Flag: Fever ({temp}Β°C).")
124
- if hr is not None and hr >= 120: flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
125
- if hr is not None and hr <= 50: flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
126
- if rr is not None and rr >= 24: flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
127
- if spo2 is not None and spo2 <= 92: flags.append(f"Red Flag: Hypoxia ({spo2}%).")
128
- if bp_str:
129
- bp = parse_bp(bp_str)
130
- if bp:
131
- if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
132
- if bp[0] <= 90 or bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
133
-
134
- # History Flags
 
 
 
 
 
 
 
 
 
 
 
135
  if history and isinstance(history, str):
136
  history_lower = history.lower()
137
  if "history of mi" in history_lower and "chest pain" in symptoms_lower:
138
  flags.append("Red Flag: History of MI with current Chest Pain.")
139
  if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
140
- flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
141
-
142
- return list(set(flags)) # Unique flags
143
 
144
  def format_patient_data_for_prompt(data: dict) -> str:
145
- # ... (Keep this function exactly as it was) ...
146
- if not data: return "No patient data provided."; prompt_str = "";
147
- for key, value in data.items(): section_title = key.replace('_', ' ').title();
148
- if isinstance(value, dict) and value: has_content = any(sub_value for sub_value in value.values());
149
- if has_content: prompt_str += f"**{section_title}:**\n";
150
- for sub_key, sub_value in value.items():
151
- if sub_value: prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
152
- elif isinstance(value, list) and value: prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
153
- elif value and not isinstance(value, dict): prompt_str += f"**{section_title}:** {value}\n";
 
 
 
 
 
 
 
154
  return prompt_str.strip()
155
 
156
 
157
  # --- Tool Definitions ---
158
- class LabOrderInput(BaseModel): test_name: str = Field(...); reason: str = Field(...); priority: str = Field("Routine")
159
- class PrescriptionInput(BaseModel): medication_name: str = Field(...); dosage: str = Field(...); route: str = Field(...); frequency: str = Field(...); duration: str = Field("As directed"); reason: str = Field(...)
160
- class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...); current_medications: Optional[List[str]] = Field(None); allergies: Optional[List[str]] = Field(None)
161
- class FlagRiskInput(BaseModel): risk_description: str = Field(...); urgency: str = Field("High")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
  @tool("order_lab_test", args_schema=LabOrderInput)
164
  def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
165
- print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}"); return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})
 
 
 
 
 
 
166
  @tool("prescribe_medication", args_schema=PrescriptionInput)
167
  def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
168
- print(f"Executing prescribe_medication: {medication_name} {dosage}..."); return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})
 
 
 
 
 
 
169
  @tool("check_drug_interactions", args_schema=InteractionCheckInput)
170
  def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
171
- # ... (Keep the FULL implementation of the NEW check_drug_interactions using API helpers) ...
172
- print(f"\n--- Executing REAL check_drug_interactions ---"); print(f"Checking potential prescription: '{potential_prescription}'"); warnings = []; potential_med_lower = potential_prescription.lower().strip();
173
- current_meds_list = current_medications or []; allergies_list = allergies or []; current_med_names_lower = [];
174
- for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", str(med));
175
- if match: current_med_names_lower.append(match.group(1).lower());
176
- allergies_lower = [str(a).lower().strip() for a in allergies_list if a]; print(f" Against Current Meds (names): {current_med_names_lower}"); print(f" Against Allergies: {allergies_lower}");
177
- print(f" Step 1: Normalizing '{potential_prescription}'..."); potential_rxcui = get_rxcui(potential_prescription); potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription);
178
- if not potential_rxcui and not potential_label: warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.");
179
- print(" Step 2: Performing Allergy Check...");
 
 
 
 
 
 
 
 
 
 
 
180
  for allergy in allergies_lower:
181
- if allergy == potential_med_lower: warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.");
182
- elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.");
183
- elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.");
184
- elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.");
185
- if potential_label: contraindications = potential_label.get("contraindications"); warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings");
186
- if contraindications: allergy_mentions_ci = search_text_list(contraindications, allergies_lower);
187
- if allergy_mentions_ci: warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}");
188
- if warnings_section: allergy_mentions_warn = search_text_list(warnings_section, allergies_lower);
189
- if allergy_mentions_warn: warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}");
190
- print(" Step 3: Performing Drug-Drug Interaction Check...");
 
 
 
 
 
 
 
 
 
 
191
  if potential_rxcui or potential_label:
192
  for current_med_name in current_med_names_lower:
193
- if not current_med_name or current_med_name == potential_med_lower: continue; print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'..."); current_rxcui = get_rxcui(current_med_name); current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name); search_terms_for_current = [current_med_name];
194
- if current_rxcui: search_terms_for_current.append(current_rxcui); search_terms_for_potential = [potential_med_lower];
195
- if potential_rxcui: search_terms_for_potential.append(potential_rxcui); interaction_found_flag = False;
196
- if potential_label and potential_label.get("drug_interactions"): interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current);
197
- if interaction_mentions: warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); interaction_found_flag = True;
198
- if current_label and current_label.get("drug_interactions") and not interaction_found_flag: interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential);
199
- if interaction_mentions: warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}");
200
- else: warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.");
201
- final_warnings = list(set(warnings)); status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear";
202
- if not final_warnings: status = "clear"; message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."; print(f"--- Interaction Check Complete for '{potential_prescription}' ---");
203
- return json.dumps({"status": status, "message": message, "warnings": final_warnings})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  @tool("flag_risk", args_schema=FlagRiskInput)
205
  def flag_risk(risk_description: str, urgency: str) -> str:
206
- print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}"); st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨"); return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})
 
 
 
 
 
 
207
  search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")
208
 
209
  # --- LangGraph Setup ---
210
- class AgentState(TypedDict): messages: Annotated[list[Any], operator.add]; patient_data: Optional[dict]
 
 
 
211
  tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
212
  tool_executor = ToolExecutor(tools)
213
  model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME)
214
  model_with_tools = model.bind_tools(tools)
215
 
216
  # --- Graph Nodes (agent_node, tool_node) ---
217
- # ... (Keep these functions exactly as they were) ...
218
  def agent_node(state: AgentState):
219
- print("\n---AGENT NODE---"); current_messages = state['messages'];
220
- if not current_messages or not isinstance(current_messages[0], SystemMessage): print("Prepending System Prompt."); current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages;
221
- print(f"Invoking LLM with {len(current_messages)} messages.");
222
- try: response = model_with_tools.invoke(current_messages); print(f"Agent Raw Response Type: {type(response)}");
223
- if hasattr(response, 'tool_calls') and response.tool_calls: print(f"Agent Response Tool Calls: {response.tool_calls}"); else: print("Agent Response: No tool calls.");
224
- except Exception as e: print(f"ERROR in agent_node: {e}"); traceback.print_exc(); error_message = AIMessage(content=f"Error: {e}"); return {"messages": [error_message]};
 
 
 
 
 
 
 
 
 
 
 
 
225
  return {"messages": [response]}
 
226
  def tool_node(state: AgentState):
227
- print("\n---TOOL NODE---"); tool_messages = []; last_message = state['messages'][-1];
228
- if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): print("Warning: Tool node called unexpectedly."); return {"messages": []};
229
- tool_calls = last_message.tool_calls; print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}"); prescriptions_requested = {}; interaction_checks_requested = {};
230
- for call in tool_calls: tool_name = call.get('name'); tool_args = call.get('args', {});
231
- if tool_name == 'prescribe_medication': med_name = tool_args.get('medication_name', '').lower();
232
- if med_name: prescriptions_requested[med_name] = call;
233
- elif tool_name == 'check_drug_interactions': potential_med = tool_args.get('potential_prescription', '').lower();
234
- if potential_med: interaction_checks_requested[potential_med] = call;
235
- valid_tool_calls_for_execution = []; blocked_ids = set();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  for med_name, prescribe_call in prescriptions_requested.items():
237
- if med_name not in interaction_checks_requested: st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check."); error_msg = ToolMessage(content=json.dumps({"status": "error", "message": f"Interaction check needed for '{med_name}'."}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']); tool_messages.append(error_msg); blocked_ids.add(prescribe_call['id']);
238
- valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids];
239
- patient_data = state.get("patient_data", {}); patient_meds_full = patient_data.get("medications", {}).get("current", []); patient_allergies = patient_data.get("allergies", []);
 
 
 
 
 
 
 
 
 
240
  for call in valid_tool_calls_for_execution:
241
  if call['name'] == 'check_drug_interactions':
242
- if 'args' not in call: call['args'] = {}; call['args']['current_medications'] = patient_meds_full; call['args']['allergies'] = patient_allergies; print(f"Augmented interaction check args for call ID {call['id']}");
243
- if valid_tool_calls_for_execution: print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}");
244
- try: responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True);
245
- for call, resp in zip(valid_tool_calls_for_execution, responses): tool_call_id = call['id']; tool_name = call['name'];
246
- if isinstance(resp, Exception): error_type = type(resp).__name__; error_str = str(resp); print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}"); traceback.print_exc(); st.error(f"Error: {error_type}"); error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}); tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name));
247
- if isinstance(resp, AttributeError) and "'dict' object has no attribute 'tool'" in error_str: print("\n *** DETECTED SPECIFIC ATTRIBUTE ERROR *** \n");
248
- else: print(f"Tool '{tool_name}' executed."); content_str = str(resp); tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name));
249
- except Exception as e: print(f"CRITICAL TOOL NODE ERROR: {e}"); traceback.print_exc(); st.error(f"Critical error: {e}"); error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}); processed_ids = {msg.tool_call_id for msg in tool_messages}; [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) for call in valid_tool_calls_for_execution if call['id'] not in processed_ids];
250
- print(f"Returning {len(tool_messages)} tool messages."); return {"messages": tool_messages}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
 
252
  # --- Graph Edges (Routing Logic) ---
253
  def should_continue(state: AgentState) -> str:
254
- print("\n---ROUTING DECISION---"); last_message = state['messages'][-1] if state['messages'] else None;
255
- if not isinstance(last_message, AIMessage): return "end_conversation_turn";
256
- if "Sorry, an internal error occurred" in last_message.content: return "end_conversation_turn";
257
- if getattr(last_message, 'tool_calls', None): return "continue_tools"; else: return "end_conversation_turn";
 
 
 
 
 
 
258
 
259
  # --- Graph Definition & Compilation ---
260
- workflow = StateGraph(AgentState); workflow.add_node("agent", agent_node); workflow.add_node("tools", tool_node)
261
- workflow.set_entry_point("agent"); workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
262
- workflow.add_edge("tools", "agent"); app = workflow.compile(); print("LangGraph compiled successfully.")
 
 
 
 
 
263
 
264
  # --- Streamlit UI ---
265
  def main():
266
  st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
267
  st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
268
  st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}")
269
- if "messages" not in st.session_state: st.session_state.messages = []
270
- if "patient_data" not in st.session_state: st.session_state.patient_data = None
271
- if "graph_app" not in st.session_state: st.session_state.graph_app = app
 
 
 
272
 
273
  # --- Patient Data Input Sidebar ---
274
  with st.sidebar:
275
  st.header("πŸ“„ Patient Intake Form")
276
- # Input fields...
277
- st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
278
- st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
279
- st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
280
- st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Sulfa", key="sb_allergies")
281
- st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
282
- st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
283
- with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
284
- with col2: bp_mmhg = st.text_input("BP", "155/90", key="sb_bp"); spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2"); pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
285
- exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50, key="sb_exam")
286
-
287
- if st.button("Start/Update Consultation", key="sb_start"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
  current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
289
- current_med_names_only = [];
290
- for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", med);
291
- if match: current_med_names_only.append(match.group(1).lower())
 
 
292
  allergies_list = []
293
- for a in allergies_str.split(','): cleaned_allergy = a.strip();
294
- if cleaned_allergy: match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy); name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower(); allergies_list.append(name_part)
295
- st.session_state.patient_data = { "demographics": {"age": age, "sex": sex}, "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, "pmh": {"conditions": pmh}, "psh": {"procedures": psh}, "medications": {"current": current_meds_list, "names_only": current_med_names_only}, "allergies": allergies_list, "social_history": {"details": social_history}, "family_history": {"details": family_history}, "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale}, "exam_findings": {"notes": exam_notes} }
296
- red_flags = check_red_flags(st.session_state.patient_data); st.sidebar.markdown("---");
297
- if red_flags: st.sidebar.warning("**Initial Red Flags:**"); [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
298
- else: st.sidebar.success("No immediate red flags.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
  initial_prompt = "Initiate consultation. Review patient data and begin analysis."
300
- st.session_state.messages = [HumanMessage(content=initial_prompt)]; st.success("Patient data loaded/updated.")
 
301
 
302
  # --- Main Chat Interface Area ---
303
  st.header("πŸ’¬ Clinical Consultation")
304
- # Display loop - key= argument REMOVED, Tool Call Display Syntax FIXED
305
  for msg in st.session_state.messages:
306
  if isinstance(msg, HumanMessage):
307
- with st.chat_message("user"): st.markdown(msg.content)
 
308
  elif isinstance(msg, AIMessage):
309
  with st.chat_message("assistant"):
310
- ai_content = msg.content; structured_output = None
311
- try: # JSON Parsing logic...
 
312
  json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
313
- if json_match: json_str = json_match.group(1); prefix = ai_content[:json_match.start()].strip(); suffix = ai_content[json_match.end():].strip();
314
- if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
315
- if suffix: st.markdown(suffix)
316
- elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
317
- else: st.markdown(ai_content)
318
- except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
319
- if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
320
- st.divider(); st.subheader("πŸ“Š AI Analysis & Recommendations")
321
- cols = st.columns(2);
322
- with cols[0]: st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}"); st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []);
323
- if ddx: [st.expander(f"{'πŸ₯‡πŸ₯ˆπŸ₯‰'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
324
- else: st.info("No DDx provided."); st.markdown("**Risk Assessment:**"); risk = structured_output.get('risk_assessment', {}); flags=risk.get('identified_red_flags',[]); concerns=risk.get("immediate_concerns",[]); comps=risk.get("potential_complications",[])
325
- if flags: st.warning(f"**Flags:** {', '.join(flags)}"); if concerns: st.warning(f"**Concerns:** {', '.join(concerns)}"); if comps: st.info(f"**Potential Complications:** {', '.join(comps)}");
326
- if not flags and not concerns: st.success("No major risks highlighted.")
327
- with cols[1]: st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {});
328
- for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("")
329
- st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}"); interaction_summary = structured_output.get("interaction_check_summary", "");
330
- if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}"); st.divider()
331
-
332
- # CORRECTED Tool Call Display Block
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
  if getattr(msg, 'tool_calls', None):
334
- with st.expander("πŸ› οΈ AI requested actions", expanded=False):
335
- if msg.tool_calls:
336
  for tc in msg.tool_calls:
337
  try:
338
  st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
339
  except Exception as display_e:
340
- st.error(f"Could not display tool call args: {display_e}", icon="⚠️")
341
  st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
342
- else:
343
- st.caption("_No actions requested._")
344
  elif isinstance(msg, ToolMessage):
345
  tool_name_display = getattr(msg, 'name', 'tool_execution')
346
- with st.chat_message(tool_name_display, avatar="πŸ› οΈ"): # No key
347
- try: # Tool message display logic...
348
- tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
349
- if status == "success" or status == "clear" or status == "flagged": st.success(f"{message}", icon="βœ…" if status != "flagged" else "🚨")
350
- elif status == "warning": st.warning(f"{message}", icon="⚠️");
351
- if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
352
- else: st.error(f"{message}", icon="❌") # Assume error if not success/clear/flagged/warning
353
- if details: st.caption(f"Details: {details}")
354
- except json.JSONDecodeError: st.info(f"{msg.content}") # Display raw if not JSON
355
- except Exception as e: st.error(f"Error displaying tool message: {e}", icon="❌"); st.caption(f"Raw content: {msg.content}")
 
 
 
 
 
 
 
 
 
 
 
 
 
356
 
357
  # --- Chat Input Logic ---
358
  if prompt := st.chat_input("Your message or follow-up query..."):
359
- if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
360
- user_message = HumanMessage(content=prompt); st.session_state.messages.append(user_message)
361
- with st.chat_message("user"): st.markdown(prompt)
 
 
 
 
362
  current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data)
363
  with st.spinner("SynapseAI is thinking..."):
364
  try:
365
  final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
366
  st.session_state.messages = final_state['messages']
367
- except Exception as e: print(f"CRITICAL ERROR: {e}"); traceback.print_exc(); st.error(f"Error: {e}")
 
 
 
368
  st.rerun()
369
 
370
  # Disclaimer
371
- st.markdown("---"); st.warning("**Disclaimer:** SynapseAI is for demonstration...")
 
372
 
373
  if __name__ == "__main__":
374
- main()
 
12
  from langchain_groq import ChatGroq
13
  from langchain_community.tools.tavily_search import TavilySearchResults
14
  from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
15
+ # from langchain_core.prompts import ChatPromptTemplate # Not explicitly used
16
  from langchain_core.pydantic_v1 import BaseModel, Field
17
  from langchain_core.tools import tool
18
  from langgraph.prebuilt import ToolExecutor
 
26
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
27
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
28
  missing_keys = []
29
+ if not UMLS_API_KEY:
30
+ missing_keys.append("UMLS_API_KEY")
31
+ if not GROQ_API_KEY:
32
+ missing_keys.append("GROQ_API_KEY")
33
+ if not TAVILY_API_KEY:
34
+ missing_keys.append("TAVILY_API_KEY")
35
+ if missing_keys:
36
+ st.error(f"Missing API Key(s): {', '.join(missing_keys)}.")
37
+ st.stop()
38
 
39
  # --- Configuration & Constants ---
40
+ class ClinicalAppSettings:
41
+ APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
42
+ PAGE_LAYOUT = "wide"
43
+ MODEL_NAME = "llama3-70b-8192"
44
+ TEMPERATURE = 0.1
45
+ MAX_SEARCH_RESULTS = 3
46
+
47
+ class ClinicalPrompts:
48
+ SYSTEM_PROMPT = """
49
  You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY]
50
  """
51
 
52
  # --- API Helper Functions (get_rxcui, get_openfda_label, search_text_list) ---
53
+ UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
54
+ RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
55
+ OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
56
+
57
  @lru_cache(maxsize=256)
58
  def get_rxcui(drug_name: str) -> Optional[str]:
59
+ if not drug_name or not isinstance(drug_name, str):
60
+ return None
61
+ drug_name = drug_name.strip()
62
+ if not drug_name:
63
+ return None
64
+ print(f"RxNorm Lookup for: '{drug_name}'")
65
+ try:
66
+ params = {"name": drug_name, "search": 1}
67
+ response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
68
+ response.raise_for_status()
69
+ data = response.json()
70
+ if data and "idGroup" in data and "rxnormId" in data["idGroup"]:
71
+ rxcui = data["idGroup"]["rxnormId"][0]
72
+ print(f" Found RxCUI: {rxcui} for '{drug_name}'")
73
+ return rxcui
74
+ else:
75
+ params = {"name": drug_name}
76
+ response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
77
+ response.raise_for_status()
78
+ data = response.json()
79
  if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
80
  for group in data["drugGroup"]["conceptGroup"]:
81
  if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
82
+ if "conceptProperties" in group and group["conceptProperties"]:
83
+ rxcui = group["conceptProperties"][0].get("rxcui")
84
+ if rxcui:
85
+ print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'")
86
+ return rxcui
87
+ print(f" RxCUI not found for '{drug_name}'.")
88
+ return None
89
+ except requests.exceptions.RequestException as e:
90
+ print(f" Error fetching RxCUI for '{drug_name}': {e}")
91
+ return None
92
+ except json.JSONDecodeError as e:
93
+ print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}")
94
+ return None
95
+ except Exception as e:
96
+ print(f" Unexpected error in get_rxcui for '{drug_name}': {e}")
97
+ return None
98
+
99
  @lru_cache(maxsize=128)
100
  def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
101
+ if not rxcui and not drug_name:
102
+ return None
103
+ print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}")
104
+ search_terms = []
105
+ if rxcui:
106
+ search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
107
+ if drug_name:
108
+ search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
109
+ search_query = " OR ".join(search_terms)
110
+ params = {"search": search_query, "limit": 1}
111
  try:
112
+ response = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
113
+ response.raise_for_status()
114
+ data = response.json()
115
+ if data and "results" in data and data["results"]:
116
+ print(f" Found OpenFDA label for query: {search_query}")
117
+ return data["results"][0]
118
+ print(f" No OpenFDA label found for query: {search_query}")
119
+ return None
120
+ except requests.exceptions.RequestException as e:
121
+ print(f" Error fetching OpenFDA label: {e}")
122
+ return None
123
+ except json.JSONDecodeError as e:
124
+ print(f" Error decoding OpenFDA JSON response: {e}")
125
+ return None
126
+ except Exception as e:
127
+ print(f" Unexpected error in get_openfda_label: {e}")
128
+ return None
129
+
130
  def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
131
+ found_snippets = []
132
+ if not text_list or not search_terms:
133
+ return found_snippets
134
+ search_terms_lower = [str(term).lower() for term in search_terms if term]
135
  for text_item in text_list:
136
+ if not isinstance(text_item, str):
137
+ continue
138
+ text_item_lower = text_item.lower()
139
  for term in search_terms_lower:
140
  if term in text_item_lower:
141
+ start_index = text_item_lower.find(term)
142
+ snippet_start = max(0, start_index - 50)
143
+ snippet_end = min(len(text_item), start_index + len(term) + 100)
144
+ snippet = text_item[snippet_start:snippet_end]
145
+ snippet = snippet.replace(term, f"**{term}**", 1)
146
  found_snippets.append(f"...{snippet}...")
147
+ break
148
  return found_snippets
149
 
150
 
151
+ # --- Other Helper Functions (parse_bp, check_red_flags, format_patient_data_for_prompt) ---
152
  def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
153
+ if not isinstance(bp_string, str):
154
+ return None
155
+ match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
156
+ if match:
157
+ return int(match.group(1)), int(match.group(2))
158
+ return None
159
 
 
160
  def check_red_flags(patient_data: dict) -> List[str]:
 
161
  flags = []
162
+ if not patient_data:
163
+ return flags
164
  symptoms = patient_data.get("hpi", {}).get("symptoms", [])
165
  vitals = patient_data.get("vitals", {})
166
  history = patient_data.get("pmh", {}).get("conditions", "")
167
  symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
168
+
 
169
  if "chest pain" in symptoms_lower:
170
  flags.append("Red Flag: Chest Pain reported.")
171
  if "shortness of breath" in symptoms_lower:
 
180
  flags.append("Red Flag: Hemoptysis (coughing up blood).")
181
  if "syncope" in symptoms_lower:
182
  flags.append("Red Flag: Syncope (fainting).")
183
+
 
184
  if vitals:
185
+ temp = vitals.get("temp_c")
186
+ hr = vitals.get("hr_bpm")
187
+ rr = vitals.get("rr_rpm")
188
+ spo2 = vitals.get("spo2_percent")
189
+ bp_str = vitals.get("bp_mmhg")
190
+
191
+ if temp is not None and temp >= 38.5:
192
+ flags.append(f"Red Flag: Fever ({temp}Β°C).")
193
+ if hr is not None and hr >= 120:
194
+ flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
195
+ if hr is not None and hr <= 50:
196
+ flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
197
+ if rr is not None and rr >= 24:
198
+ flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
199
+ if spo2 is not None and spo2 <= 92:
200
+ flags.append(f"Red Flag: Hypoxia ({spo2}%).")
201
+
202
+ if bp_str:
203
+ bp = parse_bp(bp_str)
204
+ if bp:
205
+ if bp[0] >= 180 or bp[1] >= 110:
206
+ flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
207
+ if bp[0] <= 90 or bp[1] <= 60:
208
+ flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
209
+
210
  if history and isinstance(history, str):
211
  history_lower = history.lower()
212
  if "history of mi" in history_lower and "chest pain" in symptoms_lower:
213
  flags.append("Red Flag: History of MI with current Chest Pain.")
214
  if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
215
+ flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
216
+
217
+ return list(set(flags))
218
 
219
  def format_patient_data_for_prompt(data: dict) -> str:
220
+ if not data:
221
+ return "No patient data provided."
222
+ prompt_str = ""
223
+ for key, value in data.items():
224
+ section_title = key.replace('_', ' ').title()
225
+ if isinstance(value, dict) and value:
226
+ has_content = any(sub_value for sub_value in value.values())
227
+ if has_content:
228
+ prompt_str += f"**{section_title}:**\n"
229
+ for sub_key, sub_value in value.items():
230
+ if sub_value:
231
+ prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
232
+ elif isinstance(value, list) and value:
233
+ prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
234
+ elif value and not isinstance(value, dict):
235
+ prompt_str += f"**{section_title}:** {value}\n"
236
  return prompt_str.strip()
237
 
238
 
239
  # --- Tool Definitions ---
240
+ class LabOrderInput(BaseModel):
241
+ test_name: str = Field(...)
242
+ reason: str = Field(...)
243
+ priority: str = Field("Routine")
244
+
245
+ class PrescriptionInput(BaseModel):
246
+ medication_name: str = Field(...)
247
+ dosage: str = Field(...)
248
+ route: str = Field(...)
249
+ frequency: str = Field(...)
250
+ duration: str = Field("As directed")
251
+ reason: str = Field(...)
252
+
253
+ class InteractionCheckInput(BaseModel):
254
+ potential_prescription: str = Field(...)
255
+ current_medications: Optional[List[str]] = Field(None)
256
+ allergies: Optional[List[str]] = Field(None)
257
+
258
+ class FlagRiskInput(BaseModel):
259
+ risk_description: str = Field(...)
260
+ urgency: str = Field("High")
261
 
262
  @tool("order_lab_test", args_schema=LabOrderInput)
263
  def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
264
+ print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}")
265
+ return json.dumps({
266
+ "status": "success",
267
+ "message": f"Lab Ordered: {test_name} ({priority})",
268
+ "details": f"Reason: {reason}"
269
+ })
270
+
271
  @tool("prescribe_medication", args_schema=PrescriptionInput)
272
  def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
273
+ print(f"Executing prescribe_medication: {medication_name} {dosage}...")
274
+ return json.dumps({
275
+ "status": "success",
276
+ "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
277
+ "details": f"Duration: {duration}. Reason: {reason}"
278
+ })
279
+
280
  @tool("check_drug_interactions", args_schema=InteractionCheckInput)
281
  def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
282
+ print(f"\n--- Executing REAL check_drug_interactions ---")
283
+ print(f"Checking potential prescription: '{potential_prescription}'")
284
+ warnings = []
285
+ potential_med_lower = potential_prescription.lower().strip()
286
+ current_meds_list = current_medications or []
287
+ allergies_list = allergies or []
288
+ current_med_names_lower = []
289
+ for med in current_meds_list:
290
+ match = re.match(r"^\s*([a-zA-Z\-]+)", str(med))
291
+ if match:
292
+ current_med_names_lower.append(match.group(1).lower())
293
+ allergies_lower = [str(a).lower().strip() for a in allergies_list if a]
294
+ print(f" Against Current Meds (names): {current_med_names_lower}")
295
+ print(f" Against Allergies: {allergies_lower}")
296
+ print(f" Step 1: Normalizing '{potential_prescription}'...")
297
+ potential_rxcui = get_rxcui(potential_prescription)
298
+ potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription)
299
+ if not potential_rxcui and not potential_label:
300
+ warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.")
301
+ print(" Step 2: Performing Allergy Check...")
302
  for allergy in allergies_lower:
303
+ if allergy == potential_med_lower:
304
+ warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.")
305
+ elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]:
306
+ warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.")
307
+ elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]:
308
+ warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.")
309
+ elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]:
310
+ warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.")
311
+ if potential_label:
312
+ contraindications = potential_label.get("contraindications")
313
+ warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings")
314
+ if contraindications:
315
+ allergy_mentions_ci = search_text_list(contraindications, allergies_lower)
316
+ if allergy_mentions_ci:
317
+ warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}")
318
+ if warnings_section:
319
+ allergy_mentions_warn = search_text_list(warnings_section, allergies_lower)
320
+ if allergy_mentions_warn:
321
+ warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}")
322
+ print(" Step 3: Performing Drug-Drug Interaction Check...")
323
  if potential_rxcui or potential_label:
324
  for current_med_name in current_med_names_lower:
325
+ if not current_med_name or current_med_name == potential_med_lower:
326
+ continue
327
+ print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'...")
328
+ current_rxcui = get_rxcui(current_med_name)
329
+ current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name)
330
+ search_terms_for_current = [current_med_name]
331
+ if current_rxcui:
332
+ search_terms_for_current.append(current_rxcui)
333
+ search_terms_for_potential = [potential_med_lower]
334
+ if potential_rxcui:
335
+ search_terms_for_potential.append(potential_rxcui)
336
+ interaction_found_flag = False
337
+ if potential_label and potential_label.get("drug_interactions"):
338
+ interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current)
339
+ if interaction_mentions:
340
+ warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
341
+ interaction_found_flag = True
342
+ if current_label and current_label.get("drug_interactions") and not interaction_found_flag:
343
+ interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential)
344
+ if interaction_mentions:
345
+ warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
346
+ else:
347
+ warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.")
348
+ final_warnings = list(set(warnings))
349
+ status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear"
350
+ if not final_warnings:
351
+ status = "clear"
352
+ message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."
353
+ print(f"--- Interaction Check Complete for '{potential_prescription}' ---")
354
+ return json.dumps({
355
+ "status": status,
356
+ "message": message,
357
+ "warnings": final_warnings
358
+ })
359
+
360
  @tool("flag_risk", args_schema=FlagRiskInput)
361
  def flag_risk(risk_description: str, urgency: str) -> str:
362
+ print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}")
363
+ st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨")
364
+ return json.dumps({
365
+ "status": "flagged",
366
+ "message": f"Risk '{risk_description}' flagged with {urgency} urgency."
367
+ })
368
+
369
  search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")
370
 
371
  # --- LangGraph Setup ---
372
+ class AgentState(TypedDict):
373
+ messages: Annotated[list[Any], operator.add]
374
+ patient_data: Optional[dict]
375
+
376
  tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
377
  tool_executor = ToolExecutor(tools)
378
  model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME)
379
  model_with_tools = model.bind_tools(tools)
380
 
381
  # --- Graph Nodes (agent_node, tool_node) ---
 
382
  def agent_node(state: AgentState):
383
+ print("\n---AGENT NODE---")
384
+ current_messages = state['messages']
385
+ if not current_messages or not isinstance(current_messages[0], SystemMessage):
386
+ print("Prepending System Prompt.")
387
+ current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages
388
+ print(f"Invoking LLM with {len(current_messages)} messages.")
389
+ try:
390
+ response = model_with_tools.invoke(current_messages)
391
+ print(f"Agent Raw Response Type: {type(response)}")
392
+ if hasattr(response, 'tool_calls') and response.tool_calls:
393
+ print(f"Agent Response Tool Calls: {response.tool_calls}")
394
+ else:
395
+ print("Agent Response: No tool calls.")
396
+ except Exception as e:
397
+ print(f"ERROR in agent_node: {e}")
398
+ traceback.print_exc()
399
+ error_message = AIMessage(content=f"Error: {e}")
400
+ return {"messages": [error_message]}
401
  return {"messages": [response]}
402
+
403
  def tool_node(state: AgentState):
404
+ print("\n---TOOL NODE---")
405
+ tool_messages = []
406
+ last_message = state['messages'][-1]
407
+ if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None):
408
+ print("Warning: Tool node called unexpectedly.")
409
+ return {"messages": []}
410
+ tool_calls = last_message.tool_calls
411
+ print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}")
412
+ prescriptions_requested = {}
413
+ interaction_checks_requested = {}
414
+ for call in tool_calls:
415
+ tool_name = call.get('name')
416
+ tool_args = call.get('args', {})
417
+ if tool_name == 'prescribe_medication':
418
+ med_name = tool_args.get('medication_name', '').lower()
419
+ if med_name:
420
+ prescriptions_requested[med_name] = call
421
+ elif tool_name == 'check_drug_interactions':
422
+ potential_med = tool_args.get('potential_prescription', '').lower()
423
+ if potential_med:
424
+ interaction_checks_requested[potential_med] = call
425
+ valid_tool_calls_for_execution = []
426
+ blocked_ids = set()
427
  for med_name, prescribe_call in prescriptions_requested.items():
428
+ if med_name not in interaction_checks_requested:
429
+ st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check.")
430
+ error_msg = ToolMessage(content=json.dumps({
431
+ "status": "error",
432
+ "message": f"Interaction check needed for '{med_name}'."
433
+ }), tool_call_id=prescribe_call['id'], name=prescribe_call['name'])
434
+ tool_messages.append(error_msg)
435
+ blocked_ids.add(prescribe_call['id'])
436
+ valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids]
437
+ patient_data = state.get("patient_data", {})
438
+ patient_meds_full = patient_data.get("medications", {}).get("current", [])
439
+ patient_allergies = patient_data.get("allergies", [])
440
  for call in valid_tool_calls_for_execution:
441
  if call['name'] == 'check_drug_interactions':
442
+ if 'args' not in call:
443
+ call['args'] = {}
444
+ call['args']['current_medications'] = patient_meds_full
445
+ call['args']['allergies'] = patient_allergies
446
+ print(f"Augmented interaction check args for call ID {call['id']}")
447
+ if valid_tool_calls_for_execution:
448
+ print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}")
449
+ try:
450
+ responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True)
451
+ for call, resp in zip(valid_tool_calls_for_execution, responses):
452
+ tool_call_id = call['id']
453
+ tool_name = call['name']
454
+ if isinstance(resp, Exception):
455
+ error_type = type(resp).__name__
456
+ error_str = str(resp)
457
+ print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}")
458
+ traceback.print_exc()
459
+ st.error(f"Error: {error_type}")
460
+ error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"})
461
+ tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name))
462
+ else:
463
+ print(f"Tool '{tool_name}' executed.")
464
+ content_str = str(resp)
465
+ tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name))
466
+ except Exception as e:
467
+ print(f"CRITICAL TOOL NODE ERROR: {e}")
468
+ traceback.print_exc()
469
+ st.error(f"Critical error: {e}")
470
+ error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"})
471
+ processed_ids = {msg.tool_call_id for msg in tool_messages}
472
+ [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name']))
473
+ for call in valid_tool_calls_for_execution if call['id'] not in processed_ids]
474
+ print(f"Returning {len(tool_messages)} tool messages.")
475
+ return {"messages": tool_messages}
476
 
477
  # --- Graph Edges (Routing Logic) ---
478
  def should_continue(state: AgentState) -> str:
479
+ print("\n---ROUTING DECISION---")
480
+ last_message = state['messages'][-1] if state['messages'] else None
481
+ if not isinstance(last_message, AIMessage):
482
+ return "end_conversation_turn"
483
+ if "Sorry, an internal error occurred" in last_message.content:
484
+ return "end_conversation_turn"
485
+ if getattr(last_message, 'tool_calls', None):
486
+ return "continue_tools"
487
+ else:
488
+ return "end_conversation_turn"
489
 
490
  # --- Graph Definition & Compilation ---
491
+ workflow = StateGraph(AgentState)
492
+ workflow.add_node("agent", agent_node)
493
+ workflow.add_node("tools", tool_node)
494
+ workflow.set_entry_point("agent")
495
+ workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
496
+ workflow.add_edge("tools", "agent")
497
+ app = workflow.compile()
498
+ print("LangGraph compiled successfully.")
499
 
500
  # --- Streamlit UI ---
501
  def main():
502
  st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
503
  st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
504
  st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}")
505
+ if "messages" not in st.session_state:
506
+ st.session_state.messages = []
507
+ if "patient_data" not in st.session_state:
508
+ st.session_state.patient_data = None
509
+ if "graph_app" not in st.session_state:
510
+ st.session_state.graph_app = app
511
 
512
  # --- Patient Data Input Sidebar ---
513
  with st.sidebar:
514
  st.header("πŸ“„ Patient Intake Form")
515
+ # Input fields... (Using shorter versions for brevity, assume full fields are here)
516
+ st.subheader("Demographics")
517
+ age = st.number_input("Age", 0, 120, 55)
518
+ sex = st.selectbox("Sex", ["Male", "Female", "Other"])
519
+ st.subheader("HPI")
520
+ chief_complaint = st.text_input("Chief Complaint", "Chest pain")
521
+ hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100)
522
+ symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness"], default=["Nausea", "Diaphoresis"])
523
+ st.subheader("History")
524
+ pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI")
525
+ psh = st.text_area("PSH", "Appendectomy")
526
+ st.subheader("Meds & Allergies")
527
+ current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID")
528
+ allergies_str = st.text_area("Allergies", "Penicillin (rash)")
529
+ st.subheader("Social/Family")
530
+ social_history = st.text_area("SH", "Smoker")
531
+ family_history = st.text_area("FHx", "Father MI")
532
+ st.subheader("Vitals & Exam")
533
+ col1, col2 = st.columns(2)
534
+ with col1:
535
+ temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f")
536
+ hr_bpm = st.number_input("HR", 30, 250, 95)
537
+ rr_rpm = st.number_input("RR", 5, 50, 18)
538
+ with col2:
539
+ bp_mmhg = st.text_input("BP", "155/90")
540
+ spo2_percent = st.number_input("SpO2", 70, 100, 96)
541
+ pain_scale = st.slider("Pain", 0, 10, 8)
542
+ exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50)
543
+
544
+ if st.button("Start/Update Consultation"):
545
  current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
546
+ current_med_names_only = []
547
+ for med in current_meds_list:
548
+ match = re.match(r"^\s*([a-zA-Z\-]+)", med)
549
+ if match:
550
+ current_med_names_only.append(match.group(1).lower())
551
  allergies_list = []
552
+ for a in allergies_str.split(','):
553
+ cleaned_allergy = a.strip()
554
+ if cleaned_allergy:
555
+ match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy)
556
+ name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower()
557
+ allergies_list.append(name_part)
558
+ st.session_state.patient_data = {
559
+ "demographics": {"age": age, "sex": sex},
560
+ "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
561
+ "pmh": {"conditions": pmh},
562
+ "psh": {"procedures": psh},
563
+ "medications": {"current": current_meds_list, "names_only": current_med_names_only},
564
+ "allergies": allergies_list,
565
+ "social_history": {"details": social_history},
566
+ "family_history": {"details": family_history},
567
+ "vitals": {
568
+ "temp_c": temp_c,
569
+ "hr_bpm": hr_bpm,
570
+ "bp_mmhg": bp_mmhg,
571
+ "rr_rpm": rr_rpm,
572
+ "spo2_percent": spo2_percent,
573
+ "pain_scale": pain_scale
574
+ },
575
+ "exam_findings": {"notes": exam_notes}
576
+ }
577
+ red_flags = check_red_flags(st.session_state.patient_data)
578
+ st.sidebar.markdown("---")
579
+ if red_flags:
580
+ st.sidebar.warning("**Initial Red Flags:**")
581
+ [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
582
+ else:
583
+ st.sidebar.success("No immediate red flags.")
584
  initial_prompt = "Initiate consultation. Review patient data and begin analysis."
585
+ st.session_state.messages = [HumanMessage(content=initial_prompt)]
586
+ st.success("Patient data loaded/updated.")
587
 
588
  # --- Main Chat Interface Area ---
589
  st.header("πŸ’¬ Clinical Consultation")
590
+ # Display loop - SyntaxError Fixed
591
  for msg in st.session_state.messages:
592
  if isinstance(msg, HumanMessage):
593
+ with st.chat_message("user"):
594
+ st.markdown(msg.content) # No key
595
  elif isinstance(msg, AIMessage):
596
  with st.chat_message("assistant"):
597
+ ai_content = msg.content
598
+ structured_output = None
599
+ try:
600
  json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
601
+ if json_match:
602
+ json_str = json_match.group(1)
603
+ prefix = ai_content[:json_match.start()].strip()
604
+ suffix = ai_content[json_match.end():].strip()
605
+ if prefix:
606
+ st.markdown(prefix)
607
+ structured_output = json.loads(json_str)
608
+ if suffix:
609
+ st.markdown(suffix)
610
+ elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
611
+ structured_output = json.loads(ai_content)
612
+ ai_content = ""
613
+ else:
614
+ st.markdown(ai_content)
615
+ except Exception as e:
616
+ st.markdown(ai_content)
617
+ print(f"Error parsing/displaying AI JSON: {e}")
618
+ if structured_output and isinstance(structured_output, dict):
619
+ st.divider()
620
+ st.subheader("πŸ“Š AI Analysis & Recommendations")
621
+ cols = st.columns(2)
622
+ with cols[0]:
623
+ st.markdown("**Assessment:**")
624
+ st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
625
+ st.markdown("**Differential Diagnosis:**")
626
+ ddx = structured_output.get('differential_diagnosis', [])
627
+ if ddx:
628
+ [st.expander(f"{'πŸ₯‡πŸ₯ˆπŸ₯‰'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
629
+ else:
630
+ st.info("No DDx provided.")
631
+ st.markdown("**Risk Assessment:**")
632
+ risk = structured_output.get('risk_assessment', {})
633
+ flags = risk.get('identified_red_flags', [])
634
+ concerns = risk.get("immediate_concerns", [])
635
+ comps = risk.get("potential_complications", [])
636
+ if flags:
637
+ st.warning(f"**Flags:** {', '.join(flags)}")
638
+ if concerns:
639
+ st.warning(f"**Concerns:** {', '.join(concerns)}")
640
+ if comps:
641
+ st.info(f"**Potential Complications:** {', '.join(comps)}")
642
+ if not flags and not concerns:
643
+ st.success("No major risks highlighted.")
644
+ with cols[1]:
645
+ st.markdown("**Recommended Plan:**")
646
+ plan = structured_output.get('recommended_plan', {})
647
+ for section in ["investigations","therapeutics","consultations","patient_education"]:
648
+ st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
649
+ items = plan.get(section)
650
+ if items and isinstance(items, list):
651
+ [st.markdown(f"- {item}") for item in items]
652
+ elif items:
653
+ st.markdown(f"- {items}")
654
+ else:
655
+ st.markdown("_None_")
656
+ st.markdown("")
657
+ st.markdown("**Rationale & Guideline Check:**")
658
+ st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
659
+ interaction_summary = structured_output.get("interaction_check_summary", "")
660
+ if interaction_summary:
661
+ st.markdown("**Interaction Check Summary:**")
662
+ st.markdown(f"> {interaction_summary}")
663
+ st.divider()
664
+
665
  if getattr(msg, 'tool_calls', None):
666
+ with st.expander("πŸ› οΈ AI requested actions", expanded=False):
667
+ if msg.tool_calls:
668
  for tc in msg.tool_calls:
669
  try:
670
  st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
671
  except Exception as display_e:
672
+ st.error(f"Could not display tool call arguments properly: {display_e}", icon="⚠️")
673
  st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
674
+ else:
675
+ st.caption("_No actions requested in this turn._")
676
  elif isinstance(msg, ToolMessage):
677
  tool_name_display = getattr(msg, 'name', 'tool_execution')
678
+ with st.chat_message(tool_name_display, avatar="πŸ› οΈ"):
679
+ try:
680
+ tool_data = json.loads(msg.content)
681
+ status = tool_data.get("status", "info")
682
+ message = tool_data.get("message", msg.content)
683
+ details = tool_data.get("details")
684
+ warnings = tool_data.get("warnings")
685
+ if status == "success" or status == "clear" or status == "flagged":
686
+ st.success(f"{message}", icon="βœ…" if status != "flagged" else "🚨")
687
+ elif status == "warning":
688
+ st.warning(f"{message}", icon="⚠️")
689
+ if warnings and isinstance(warnings, list):
690
+ st.caption("Details:")
691
+ [st.caption(f"- {warn}") for warn in warnings]
692
+ else:
693
+ st.error(f"{message}", icon="❌")
694
+ if details:
695
+ st.caption(f"Details: {details}")
696
+ except json.JSONDecodeError:
697
+ st.info(f"{msg.content}")
698
+ except Exception as e:
699
+ st.error(f"Error displaying tool message: {e}", icon="❌")
700
+ st.caption(f"Raw content: {msg.content}")
701
 
702
  # --- Chat Input Logic ---
703
  if prompt := st.chat_input("Your message or follow-up query..."):
704
+ if not st.session_state.patient_data:
705
+ st.warning("Please load patient data first.")
706
+ st.stop()
707
+ user_message = HumanMessage(content=prompt)
708
+ st.session_state.messages.append(user_message)
709
+ with st.chat_message("user"):
710
+ st.markdown(prompt)
711
  current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data)
712
  with st.spinner("SynapseAI is thinking..."):
713
  try:
714
  final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
715
  st.session_state.messages = final_state['messages']
716
+ except Exception as e:
717
+ print(f"CRITICAL ERROR: {e}")
718
+ traceback.print_exc()
719
+ st.error(f"Error: {e}")
720
  st.rerun()
721
 
722
  # Disclaimer
723
+ st.markdown("---")
724
+ st.warning("**Disclaimer:** SynapseAI is for demonstration...")
725
 
726
  if __name__ == "__main__":
727
+ main()