Update agent.py
Browse files
agent.py
CHANGED
@@ -22,8 +22,8 @@ logger = logging.getLogger(__name__)
|
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
|
24 |
# ββ Environment Variables βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
25 |
-
UMLS_API_KEY
|
26 |
-
GROQ_API_KEY
|
27 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
28 |
|
29 |
if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
|
@@ -31,8 +31,8 @@ if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
|
|
31 |
raise RuntimeError("Missing required API keys")
|
32 |
|
33 |
# ββ Agent Configuration βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
34 |
-
AGENT_MODEL_NAME
|
35 |
-
AGENT_TEMPERATURE
|
36 |
MAX_SEARCH_RESULTS = 3
|
37 |
|
38 |
class ClinicalPrompts:
|
@@ -42,30 +42,32 @@ class ClinicalPrompts:
|
|
42 |
"""
|
43 |
|
44 |
# ββ Helper Functions ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
45 |
-
UMLS_AUTH_ENDPOINT
|
46 |
-
RXNORM_API_BASE
|
47 |
-
OPENFDA_API_BASE
|
48 |
|
49 |
@lru_cache(maxsize=256)
|
50 |
def get_rxcui(drug_name: str) -> Optional[str]:
|
51 |
-
"""Lookup RxNorm CUI for a drug name."""
|
52 |
drug_name = (drug_name or "").strip()
|
53 |
if not drug_name:
|
54 |
return None
|
55 |
logger.info(f"Looking up RxCUI for '{drug_name}'")
|
56 |
try:
|
|
|
57 |
params = {"name": drug_name, "search": 1}
|
58 |
r = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
|
59 |
r.raise_for_status()
|
60 |
-
|
61 |
-
if ids
|
62 |
logger.info(f"Found RxCUI {ids[0]} for '{drug_name}'")
|
63 |
return ids[0]
|
64 |
-
#
|
65 |
r = requests.get(f"{RXNORM_API_BASE}/drugs.json", params={"name": drug_name}, timeout=10)
|
66 |
r.raise_for_status()
|
67 |
-
for
|
68 |
-
|
|
|
69 |
logger.info(f"Found RxCUI {props[0]['rxcui']} via /drugs for '{drug_name}'")
|
70 |
return props[0]["rxcui"]
|
71 |
except Exception:
|
@@ -74,7 +76,7 @@ def get_rxcui(drug_name: str) -> Optional[str]:
|
|
74 |
|
75 |
@lru_cache(maxsize=128)
|
76 |
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[Dict[str, Any]]:
|
77 |
-
"""Fetch label
|
78 |
if not (rxcui or drug_name):
|
79 |
return None
|
80 |
terms = []
|
@@ -96,7 +98,7 @@ def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = No
|
|
96 |
return None
|
97 |
|
98 |
def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
|
99 |
-
"""Return snippets from texts containing any of the search terms."""
|
100 |
snippets = []
|
101 |
lowers = [t.lower() for t in terms if t]
|
102 |
for text in texts or []:
|
@@ -105,7 +107,7 @@ def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
|
|
105 |
if term in tl:
|
106 |
i = tl.find(term)
|
107 |
start = max(0, i - 50)
|
108 |
-
end
|
109 |
snippet = text[start:end]
|
110 |
snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, flags=re.IGNORECASE)
|
111 |
snippets.append(f"...{snippet}...")
|
@@ -113,34 +115,37 @@ def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
|
|
113 |
return snippets
|
114 |
|
115 |
def parse_bp(bp: str) -> Optional[tuple[int, int]]:
|
116 |
-
"""Parse
|
117 |
if m := re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", (bp or "").strip()):
|
118 |
return int(m.group(1)), int(m.group(2))
|
119 |
return None
|
120 |
|
121 |
def check_red_flags(patient_data: Dict[str, Any]) -> List[str]:
|
122 |
-
"""Identify immediate red flags
|
123 |
flags: List[str] = []
|
124 |
-
hpi
|
125 |
vitals = patient_data.get("vitals", {})
|
126 |
-
|
127 |
-
|
|
|
128 |
mapping = {
|
129 |
"chest pain": "Chest pain reported",
|
130 |
"shortness of breath": "Shortness of breath reported",
|
131 |
"severe headache": "Severe headache reported",
|
132 |
-
"syncope": "Syncope
|
133 |
-
"hemoptysis": "Hemoptysis
|
134 |
}
|
135 |
for term, desc in mapping.items():
|
136 |
-
if term in
|
137 |
flags.append(f"Red Flag: {desc}.")
|
138 |
-
|
|
|
139 |
temp = vitals.get("temp_c")
|
140 |
hr = vitals.get("hr_bpm")
|
141 |
rr = vitals.get("rr_rpm")
|
142 |
spo2 = vitals.get("spo2_percent")
|
143 |
bp = parse_bp(vitals.get("bp_mmhg", ""))
|
|
|
144 |
if temp is not None and temp >= 38.5:
|
145 |
flags.append(f"Red Flag: Fever ({temp}Β°C).")
|
146 |
if hr is not None:
|
@@ -158,10 +163,11 @@ def check_red_flags(patient_data: Dict[str, Any]) -> List[str]:
|
|
158 |
flags.append(f"Red Flag: Hypertensive urgency/emergency ({sys}/{dia} mmHg).")
|
159 |
if sys <= 90 or dia <= 60:
|
160 |
flags.append(f"Red Flag: Hypotension ({sys}/{dia} mmHg).")
|
161 |
-
|
|
|
162 |
|
163 |
def format_patient_data_for_prompt(data: Dict[str, Any]) -> str:
|
164 |
-
"""
|
165 |
if not data:
|
166 |
return "No patient data provided."
|
167 |
lines: List[str] = []
|
@@ -181,29 +187,30 @@ def format_patient_data_for_prompt(data: Dict[str, Any]) -> str:
|
|
181 |
# ββ Tool Input Schemas ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
182 |
class LabOrderInput(BaseModel):
|
183 |
test_name: str = Field(...)
|
184 |
-
reason: str
|
185 |
-
priority: str
|
186 |
|
187 |
class PrescriptionInput(BaseModel):
|
188 |
-
medication_name: str
|
189 |
-
dosage: str
|
190 |
-
route: str
|
191 |
-
frequency: str
|
192 |
-
duration: str
|
193 |
-
reason: str
|
194 |
|
195 |
class InteractionCheckInput(BaseModel):
|
196 |
-
potential_prescription: str
|
197 |
current_medications: Optional[List[str]] = Field(None)
|
198 |
-
allergies: Optional[List[str]]
|
199 |
|
200 |
class FlagRiskInput(BaseModel):
|
201 |
risk_description: str = Field(...)
|
202 |
-
urgency: str
|
203 |
|
204 |
# ββ Tool Implementations ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
205 |
@tool("order_lab_test", args_schema=LabOrderInput)
|
206 |
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
|
|
|
207 |
logger.info(f"Ordering lab test: {test_name}, reason: {reason}, priority: {priority}")
|
208 |
return json.dumps({
|
209 |
"status": "success",
|
@@ -220,6 +227,7 @@ def prescribe_medication(
|
|
220 |
duration: str,
|
221 |
reason: str
|
222 |
) -> str:
|
|
|
223 |
logger.info(f"Preparing prescription: {medication_name} {dosage}, route: {route}, freq: {frequency}")
|
224 |
return json.dumps({
|
225 |
"status": "success",
|
@@ -233,15 +241,17 @@ def check_drug_interactions(
|
|
233 |
current_medications: Optional[List[str]] = None,
|
234 |
allergies: Optional[List[str]] = None
|
235 |
) -> str:
|
|
|
236 |
logger.info(f"Checking interactions for: {potential_prescription}")
|
237 |
warnings: List[str] = []
|
238 |
pm = [m.lower().strip() for m in (current_medications or []) if m]
|
239 |
al = [a.lower().strip() for a in (allergies or []) if a]
|
240 |
|
241 |
-
# Allergy
|
242 |
if potential_prescription.lower().strip() in al:
|
243 |
warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{potential_prescription}'.")
|
244 |
-
|
|
|
245 |
rxcui = get_rxcui(potential_prescription)
|
246 |
label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
|
247 |
if not (rxcui or label):
|
@@ -259,16 +269,15 @@ def check_drug_interactions(
|
|
259 |
for med in pm:
|
260 |
mrxcui = get_rxcui(med)
|
261 |
mlabel = get_openfda_label(rxcui=mrxcui, drug_name=med)
|
262 |
-
# check in both labels
|
263 |
for sec in ("drug_interactions",):
|
264 |
for src_label, src_name in ((label, potential_prescription), (mlabel, med)):
|
265 |
items = src_label.get(sec) if src_label else None
|
266 |
if isinstance(items, list):
|
267 |
-
snippets = search_text_list(items, [med if src_name==potential_prescription else potential_prescription])
|
268 |
if snippets:
|
269 |
warnings.append(f"Interaction ({src_name} label): {'; '.join(snippets)}")
|
270 |
|
271 |
-
status
|
272 |
message = (
|
273 |
f"{len(warnings)} issue(s) found for '{potential_prescription}'."
|
274 |
if warnings else
|
@@ -278,19 +287,21 @@ def check_drug_interactions(
|
|
278 |
|
279 |
@tool("flag_risk", args_schema=FlagRiskInput)
|
280 |
def flag_risk(risk_description: str, urgency: str = "High") -> str:
|
|
|
281 |
logger.info(f"Flagging risk: {risk_description} (urgency={urgency})")
|
282 |
return json.dumps({
|
283 |
"status": "flagged",
|
284 |
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
|
285 |
})
|
286 |
|
|
|
287 |
search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
|
288 |
-
all_tools
|
289 |
|
290 |
# ββ LLM & Tool Executor ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
291 |
-
llm
|
292 |
model_with_tools = llm.bind_tools(all_tools)
|
293 |
-
tool_executor
|
294 |
|
295 |
# ββ State Definition ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
296 |
class AgentState(TypedDict):
|
@@ -319,17 +330,19 @@ def tool_node(state: AgentState) -> Dict[str, Any]:
|
|
319 |
return {"messages": [], "interaction_warnings": None}
|
320 |
|
321 |
calls = last.tool_calls
|
322 |
-
# Safety: require interaction check before prescribing
|
323 |
blocked_ids = set()
|
324 |
for call in calls:
|
325 |
if call["name"] == "prescribe_medication":
|
326 |
med = call["args"].get("medication_name", "").lower()
|
327 |
-
if not any(
|
|
|
|
|
|
|
|
|
328 |
logger.warning(f"Blocking prescribe_medication for '{med}' without interaction check")
|
329 |
blocked_ids.add(call["id"])
|
330 |
|
331 |
to_execute = [c for c in calls if c["id"] not in blocked_ids]
|
332 |
-
# Augment interaction checks with patient data
|
333 |
pd = state.get("patient_data", {})
|
334 |
for call in to_execute:
|
335 |
if call["name"] == "check_drug_interactions":
|
@@ -337,7 +350,7 @@ def tool_node(state: AgentState) -> Dict[str, Any]:
|
|
337 |
call["args"].setdefault("allergies", pd.get("allergies", []))
|
338 |
|
339 |
messages: List[ToolMessage] = []
|
340 |
-
warnings: List[str]
|
341 |
try:
|
342 |
responses = tool_executor.batch(to_execute, return_exceptions=True)
|
343 |
for call, resp in zip(to_execute, responses):
|
@@ -353,7 +366,6 @@ def tool_node(state: AgentState) -> Dict[str, Any]:
|
|
353 |
messages.append(ToolMessage(content=content, tool_call_id=call["id"], name=call["name"]))
|
354 |
except Exception as e:
|
355 |
logger.exception("Critical error in tool_node")
|
356 |
-
# return an error message for each pending call
|
357 |
for call in to_execute:
|
358 |
messages.append(ToolMessage(
|
359 |
content=json.dumps({"status": "error", "message": str(e)}),
|
@@ -368,8 +380,7 @@ def reflection_node(state: AgentState) -> Dict[str, Any]:
|
|
368 |
logger.warning("reflection_node called without warnings")
|
369 |
return {"messages": [], "interaction_warnings": None}
|
370 |
|
371 |
-
|
372 |
-
triggering: Optional[AIMessage] = None
|
373 |
for msg in reversed(state["messages"]):
|
374 |
if isinstance(msg, AIMessage) and getattr(msg, "tool_calls", None):
|
375 |
triggering = msg
|
@@ -381,7 +392,8 @@ def reflection_node(state: AgentState) -> Dict[str, Any]:
|
|
381 |
prompt = (
|
382 |
"You are SynapseAI, performing a focused safety review of the following plan:\n\n"
|
383 |
f"{triggering.content}\n\n"
|
384 |
-
"Highlight any issues based on these warnings:\n" +
|
|
|
385 |
)
|
386 |
try:
|
387 |
resp = llm.invoke([SystemMessage(content="Safety reflection"), HumanMessage(content=prompt)])
|
|
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
|
24 |
# ββ Environment Variables βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
25 |
+
UMLS_API_KEY = os.getenv("UMLS_API_KEY")
|
26 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
27 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
28 |
|
29 |
if not all([UMLS_API_KEY, GROQ_API_KEY, TAVILY_API_KEY]):
|
|
|
31 |
raise RuntimeError("Missing required API keys")
|
32 |
|
33 |
# ββ Agent Configuration βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
34 |
+
AGENT_MODEL_NAME = "llama3-70b-8192"
|
35 |
+
AGENT_TEMPERATURE = 0.1
|
36 |
MAX_SEARCH_RESULTS = 3
|
37 |
|
38 |
class ClinicalPrompts:
|
|
|
42 |
"""
|
43 |
|
44 |
# ββ Helper Functions ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
45 |
+
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
|
46 |
+
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
|
47 |
+
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
|
48 |
|
49 |
@lru_cache(maxsize=256)
|
50 |
def get_rxcui(drug_name: str) -> Optional[str]:
|
51 |
+
"""Lookup RxNorm CUI for a given drug name."""
|
52 |
drug_name = (drug_name or "").strip()
|
53 |
if not drug_name:
|
54 |
return None
|
55 |
logger.info(f"Looking up RxCUI for '{drug_name}'")
|
56 |
try:
|
57 |
+
# First attempt
|
58 |
params = {"name": drug_name, "search": 1}
|
59 |
r = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
|
60 |
r.raise_for_status()
|
61 |
+
ids = r.json().get("idGroup", {}).get("rxnormId")
|
62 |
+
if ids:
|
63 |
logger.info(f"Found RxCUI {ids[0]} for '{drug_name}'")
|
64 |
return ids[0]
|
65 |
+
# Fallback search
|
66 |
r = requests.get(f"{RXNORM_API_BASE}/drugs.json", params={"name": drug_name}, timeout=10)
|
67 |
r.raise_for_status()
|
68 |
+
for grp in r.json().get("drugGroup", {}).get("conceptGroup", []):
|
69 |
+
props = grp.get("conceptProperties")
|
70 |
+
if props:
|
71 |
logger.info(f"Found RxCUI {props[0]['rxcui']} via /drugs for '{drug_name}'")
|
72 |
return props[0]["rxcui"]
|
73 |
except Exception:
|
|
|
76 |
|
77 |
@lru_cache(maxsize=128)
|
78 |
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[Dict[str, Any]]:
|
79 |
+
"""Fetch the OpenFDA label for a drug by RxCUI or name."""
|
80 |
if not (rxcui or drug_name):
|
81 |
return None
|
82 |
terms = []
|
|
|
98 |
return None
|
99 |
|
100 |
def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
|
101 |
+
"""Return highlighted snippets from a list of texts containing any of the search terms."""
|
102 |
snippets = []
|
103 |
lowers = [t.lower() for t in terms if t]
|
104 |
for text in texts or []:
|
|
|
107 |
if term in tl:
|
108 |
i = tl.find(term)
|
109 |
start = max(0, i - 50)
|
110 |
+
end = min(len(text), i + len(term) + 100)
|
111 |
snippet = text[start:end]
|
112 |
snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, flags=re.IGNORECASE)
|
113 |
snippets.append(f"...{snippet}...")
|
|
|
115 |
return snippets
|
116 |
|
117 |
def parse_bp(bp: str) -> Optional[tuple[int, int]]:
|
118 |
+
"""Parse 'SYS/DIA' blood pressure string into a (sys, dia) tuple."""
|
119 |
if m := re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", (bp or "").strip()):
|
120 |
return int(m.group(1)), int(m.group(2))
|
121 |
return None
|
122 |
|
123 |
def check_red_flags(patient_data: Dict[str, Any]) -> List[str]:
|
124 |
+
"""Identify immediate red flags from patient_data."""
|
125 |
flags: List[str] = []
|
126 |
+
hpi = patient_data.get("hpi", {})
|
127 |
vitals = patient_data.get("vitals", {})
|
128 |
+
syms = [s.lower() for s in hpi.get("symptoms", []) if isinstance(s, str)]
|
129 |
+
|
130 |
+
# Symptom-based flags
|
131 |
mapping = {
|
132 |
"chest pain": "Chest pain reported",
|
133 |
"shortness of breath": "Shortness of breath reported",
|
134 |
"severe headache": "Severe headache reported",
|
135 |
+
"syncope": "Syncope reported",
|
136 |
+
"hemoptysis": "Hemoptysis reported"
|
137 |
}
|
138 |
for term, desc in mapping.items():
|
139 |
+
if term in syms:
|
140 |
flags.append(f"Red Flag: {desc}.")
|
141 |
+
|
142 |
+
# Vitals-based flags
|
143 |
temp = vitals.get("temp_c")
|
144 |
hr = vitals.get("hr_bpm")
|
145 |
rr = vitals.get("rr_rpm")
|
146 |
spo2 = vitals.get("spo2_percent")
|
147 |
bp = parse_bp(vitals.get("bp_mmhg", ""))
|
148 |
+
|
149 |
if temp is not None and temp >= 38.5:
|
150 |
flags.append(f"Red Flag: Fever ({temp}Β°C).")
|
151 |
if hr is not None:
|
|
|
163 |
flags.append(f"Red Flag: Hypertensive urgency/emergency ({sys}/{dia} mmHg).")
|
164 |
if sys <= 90 or dia <= 60:
|
165 |
flags.append(f"Red Flag: Hypotension ({sys}/{dia} mmHg).")
|
166 |
+
|
167 |
+
return list(dict.fromkeys(flags)) # dedupe, preserve order
|
168 |
|
169 |
def format_patient_data_for_prompt(data: Dict[str, Any]) -> str:
|
170 |
+
"""Format patient_data dict into a markdown-like prompt section."""
|
171 |
if not data:
|
172 |
return "No patient data provided."
|
173 |
lines: List[str] = []
|
|
|
187 |
# ββ Tool Input Schemas ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
188 |
class LabOrderInput(BaseModel):
|
189 |
test_name: str = Field(...)
|
190 |
+
reason: str = Field(...)
|
191 |
+
priority: str = Field("Routine")
|
192 |
|
193 |
class PrescriptionInput(BaseModel):
|
194 |
+
medication_name: str = Field(...)
|
195 |
+
dosage: str = Field(...)
|
196 |
+
route: str = Field(...)
|
197 |
+
frequency: str = Field(...)
|
198 |
+
duration: str = Field("As directed")
|
199 |
+
reason: str = Field(...)
|
200 |
|
201 |
class InteractionCheckInput(BaseModel):
|
202 |
+
potential_prescription: str
|
203 |
current_medications: Optional[List[str]] = Field(None)
|
204 |
+
allergies: Optional[List[str]] = Field(None)
|
205 |
|
206 |
class FlagRiskInput(BaseModel):
|
207 |
risk_description: str = Field(...)
|
208 |
+
urgency: str = Field("High")
|
209 |
|
210 |
# ββ Tool Implementations ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
211 |
@tool("order_lab_test", args_schema=LabOrderInput)
|
212 |
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
|
213 |
+
"""Place an order for a laboratory test."""
|
214 |
logger.info(f"Ordering lab test: {test_name}, reason: {reason}, priority: {priority}")
|
215 |
return json.dumps({
|
216 |
"status": "success",
|
|
|
227 |
duration: str,
|
228 |
reason: str
|
229 |
) -> str:
|
230 |
+
"""Prepare a medication prescription."""
|
231 |
logger.info(f"Preparing prescription: {medication_name} {dosage}, route: {route}, freq: {frequency}")
|
232 |
return json.dumps({
|
233 |
"status": "success",
|
|
|
241 |
current_medications: Optional[List[str]] = None,
|
242 |
allergies: Optional[List[str]] = None
|
243 |
) -> str:
|
244 |
+
"""Check for drugβdrug interactions and allergy risks."""
|
245 |
logger.info(f"Checking interactions for: {potential_prescription}")
|
246 |
warnings: List[str] = []
|
247 |
pm = [m.lower().strip() for m in (current_medications or []) if m]
|
248 |
al = [a.lower().strip() for a in (allergies or []) if a]
|
249 |
|
250 |
+
# Allergy exact match
|
251 |
if potential_prescription.lower().strip() in al:
|
252 |
warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{potential_prescription}'.")
|
253 |
+
|
254 |
+
# Identify drug via RxNorm/OpenFDA
|
255 |
rxcui = get_rxcui(potential_prescription)
|
256 |
label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
|
257 |
if not (rxcui or label):
|
|
|
269 |
for med in pm:
|
270 |
mrxcui = get_rxcui(med)
|
271 |
mlabel = get_openfda_label(rxcui=mrxcui, drug_name=med)
|
|
|
272 |
for sec in ("drug_interactions",):
|
273 |
for src_label, src_name in ((label, potential_prescription), (mlabel, med)):
|
274 |
items = src_label.get(sec) if src_label else None
|
275 |
if isinstance(items, list):
|
276 |
+
snippets = search_text_list(items, [med if src_name == potential_prescription else potential_prescription])
|
277 |
if snippets:
|
278 |
warnings.append(f"Interaction ({src_name} label): {'; '.join(snippets)}")
|
279 |
|
280 |
+
status = "warning" if warnings else "clear"
|
281 |
message = (
|
282 |
f"{len(warnings)} issue(s) found for '{potential_prescription}'."
|
283 |
if warnings else
|
|
|
287 |
|
288 |
@tool("flag_risk", args_schema=FlagRiskInput)
|
289 |
def flag_risk(risk_description: str, urgency: str = "High") -> str:
|
290 |
+
"""Flag a clinical risk with given urgency."""
|
291 |
logger.info(f"Flagging risk: {risk_description} (urgency={urgency})")
|
292 |
return json.dumps({
|
293 |
"status": "flagged",
|
294 |
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
|
295 |
})
|
296 |
|
297 |
+
# Include the Tavily search tool
|
298 |
search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
|
299 |
+
all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
|
300 |
|
301 |
# ββ LLM & Tool Executor ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
302 |
+
llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME)
|
303 |
model_with_tools = llm.bind_tools(all_tools)
|
304 |
+
tool_executor = ToolExecutor(all_tools)
|
305 |
|
306 |
# ββ State Definition ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
307 |
class AgentState(TypedDict):
|
|
|
330 |
return {"messages": [], "interaction_warnings": None}
|
331 |
|
332 |
calls = last.tool_calls
|
|
|
333 |
blocked_ids = set()
|
334 |
for call in calls:
|
335 |
if call["name"] == "prescribe_medication":
|
336 |
med = call["args"].get("medication_name", "").lower()
|
337 |
+
if not any(
|
338 |
+
c["name"] == "check_drug_interactions" and
|
339 |
+
c["args"].get("potential_prescription","").lower() == med
|
340 |
+
for c in calls
|
341 |
+
):
|
342 |
logger.warning(f"Blocking prescribe_medication for '{med}' without interaction check")
|
343 |
blocked_ids.add(call["id"])
|
344 |
|
345 |
to_execute = [c for c in calls if c["id"] not in blocked_ids]
|
|
|
346 |
pd = state.get("patient_data", {})
|
347 |
for call in to_execute:
|
348 |
if call["name"] == "check_drug_interactions":
|
|
|
350 |
call["args"].setdefault("allergies", pd.get("allergies", []))
|
351 |
|
352 |
messages: List[ToolMessage] = []
|
353 |
+
warnings: List[str] = []
|
354 |
try:
|
355 |
responses = tool_executor.batch(to_execute, return_exceptions=True)
|
356 |
for call, resp in zip(to_execute, responses):
|
|
|
366 |
messages.append(ToolMessage(content=content, tool_call_id=call["id"], name=call["name"]))
|
367 |
except Exception as e:
|
368 |
logger.exception("Critical error in tool_node")
|
|
|
369 |
for call in to_execute:
|
370 |
messages.append(ToolMessage(
|
371 |
content=json.dumps({"status": "error", "message": str(e)}),
|
|
|
380 |
logger.warning("reflection_node called without warnings")
|
381 |
return {"messages": [], "interaction_warnings": None}
|
382 |
|
383 |
+
triggering = None
|
|
|
384 |
for msg in reversed(state["messages"]):
|
385 |
if isinstance(msg, AIMessage) and getattr(msg, "tool_calls", None):
|
386 |
triggering = msg
|
|
|
392 |
prompt = (
|
393 |
"You are SynapseAI, performing a focused safety review of the following plan:\n\n"
|
394 |
f"{triggering.content}\n\n"
|
395 |
+
"Highlight any issues based on these warnings:\n" +
|
396 |
+
"\n".join(f"- {w}" for w in warns)
|
397 |
)
|
398 |
try:
|
399 |
resp = llm.invoke([SystemMessage(content="Safety reflection"), HumanMessage(content=prompt)])
|