import os import re import json import requests import traceback import operator from functools import lru_cache from typing import Any, Dict, List, Optional, TypedDict, Annotated from langchain_groq import ChatGroq from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import tool from langgraph.prebuilt import ToolExecutor from langgraph.graph import StateGraph, END # --- Configuration & Constants --- UMLS_API_KEY = os.environ.get("UMLS_API_KEY") GROQ_API_KEY = os.environ.get("GROQ_API_KEY") TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY") AGENT_MODEL_NAME = "llama3-70b-8192" AGENT_TEMPERATURE = 0.1 MAX_SEARCH_RESULTS = 3 UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key" RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST" OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json" class ClinicalPrompts: SYSTEM_PROMPT = ( """ You are SynapseAI, an expert AI clinical assistant in an interactive consultation. Analyze patient data, provide differential diagnoses, suggest management plans, and identify risks according to current standards of care. 1. Process information sequentially; use full conversation history. 2. Ask for clarification if data is insufficient; do not guess. 3. When ready, output a complete JSON assessment as specified. 4. Before prescribing, run drug-interaction checks and report results. 5. Flag urgent red flags immediately. 6. Use tools logically; await results when needed. 7. Query clinical guidelines via tavily_search_results and cite them. 8. Be concise, accurate, and use standard terminology. """ ) # --- Helper Functions --- @lru_cache(maxsize=256) def get_rxcui(drug_name: str) -> Optional[str]: """Return RxNorm CUI for a given drug name.""" if not drug_name: return None name = drug_name.strip() if not name: return None try: # Primary lookup params = {"name": name, "search": 1} resp = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10) resp.raise_for_status() data = resp.json() ids = data.get("idGroup", {}).get("rxnormId", []) if ids: return ids[0] # Fallback lookup params = {"name": name} resp = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10) resp.raise_for_status() data = resp.json() groups = data.get("drugGroup", {}).get("conceptGroup", []) for grp in groups: if grp.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]: props = grp.get("conceptProperties", []) if props: return props[0].get("rxcui") except Exception: traceback.print_exc() return None @lru_cache(maxsize=128) def get_openfda_label( rxcui: Optional[str] = None, drug_name: Optional[str] = None ) -> Optional[dict]: """Fetch OpenFDA drug label by RxCUI or name.""" if not (rxcui or drug_name): return None terms = [] if rxcui: terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"') if drug_name: name = drug_name.lower() terms.append(f'(openfda.brand_name:"{name}" OR openfda.generic_name:"{name}")') query = " OR ".join(terms) params = {"search": query, "limit": 1} try: resp = requests.get(OPENFDA_API_BASE, params=params, timeout=15) resp.raise_for_status() data = resp.json() results = data.get("results", []) if results: return results[0] except Exception: traceback.print_exc() return None def search_text_list(texts: List[str], terms: List[str]) -> List[str]: """Return snippets where any term appears in texts.""" snippets = [] lowers = [t.lower() for t in terms if t] for txt in texts or []: if not isinstance(txt, str): continue low_txt = txt.lower() for term in lowers: idx = low_txt.find(term) if idx >= 0: start = max(0, idx - 50) end = min(len(txt), idx + len(term) + 100) snippet = txt[start:end] snippet = re.sub( f"({re.escape(term)})", r"**\1**", snippet, count=1, flags=re.IGNORECASE, ) snippets.append(f"...{snippet}...") break return snippets def parse_bp(bp_str: str) -> Optional[tuple[int, int]]: """Parse blood pressure string 'systolic/diastolic'.""" match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_str or "") if match: return int(match.group(1)), int(match.group(2)) return None def check_red_flags(patient_data: Dict) -> List[str]: """Identify critical red flags from patient data.""" flags = [] if not patient_data: return flags symptoms = [s.lower() for s in patient_data.get("hpi", {}).get("symptoms", [])] vitals = patient_data.get("vitals", {}) history = patient_data.get("pmh", {}).get("conditions", "").lower() # Symptom-based flags mapping = { "chest pain": "Chest Pain reported.", "shortness of breath": "Shortness of Breath reported.", "severe headache": "Severe Headache reported.", "sudden vision loss": "Sudden Vision Loss reported.", "weakness on one side": "Unilateral Weakness reported (potential stroke).", "hemoptysis": "Hemoptysis (coughing up blood).", "syncope": "Syncope (fainting).", } for term, desc in mapping.items(): if term in symptoms: flags.append(f"Red Flag: {desc}") # Vital sign flags temp = vitals.get("temp_c") hr = vitals.get("hr_bpm") rr = vitals.get("rr_rpm") spo2 = vitals.get("spo2_percent") bp = parse_bp(vitals.get("bp_mmhg", "")) if temp and temp >= 38.5: flags.append(f"Red Flag: Fever ({temp}°C).") if hr: if hr >= 120: flags.append(f"Red Flag: Tachycardia ({hr} bpm).") if hr <= 50: flags.append(f"Red Flag: Bradycardia ({hr} bpm).") if rr and rr >= 24: flags.append(f"Red Flag: Tachypnea ({rr} rpm).") if spo2 and spo2 <= 92: flags.append(f"Red Flag: Hypoxia ({spo2}%).") if bp: sys, dia = bp if sys >= 180 or dia >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {sys}/{dia} mmHg).") if sys <= 90 or dia <= 60: flags.append(f"Red Flag: Hypotension (BP: {sys}/{dia} mmHg).") # History-based flags if "history of mi" in history and "chest pain" in symptoms: flags.append("Red Flag: History of MI with current Chest Pain.") if "history of dvt/pe" in history and "shortness of breath" in symptoms: flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.") return list(set(flags)) def format_patient_data_for_prompt(data: Dict) -> str: """Convert patient data dict into a human-readable prompt section.""" if not data: return "No patient data provided." sections = [] for key, val in data.items(): title = key.replace("_", " ").title() if isinstance(val, dict) and any(val.values()): lines = [f"**{title}:**"] for subk, subv in val.items(): if subv: lines.append(f"- {subk.replace('_', ' ').title()}: {subv}") sections.append("\n".join(lines)) elif isinstance(val, list) and val: sections.append(f"**{title}:** {', '.join(map(str, val))}") elif val: sections.append(f"**{title}:** {val}") return "\n\n".join(sections) # --- Tool Schemas & Definitions --- class LabOrderInput(BaseModel): test_name: str = Field(...) reason: str = Field(...) priority: str = Field("Routine") class PrescriptionInput(BaseModel): medication_name: str = Field(...) dosage: str = Field(...) route: str = Field(...) frequency: str = Field(...) duration: str = Field("As directed") reason: str = Field(...) class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...) current_medications: Optional[List[str]] = Field(None) allergies: Optional[List[str]] = Field(None) class FlagRiskInput(BaseModel): risk_description: str = Field(...) urgency: str = Field("High") @tool("order_lab_test", args_schema=LabOrderInput) def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str: result = { "status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}" } return json.dumps(result) @tool("prescribe_medication", args_schema=PrescriptionInput) def prescribe_medication( medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str ) -> str: result = { "status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}" } return json.dumps(result) @tool("check_drug_interactions", args_schema=InteractionCheckInput) def check_drug_interactions( potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None ) -> str: warnings: List[str] = [] presc_lower = potential_prescription.lower().strip() current = [m.lower().strip() for m in (current_medications or [])] allergy_list = [a.lower().strip() for a in (allergies or [])] # Normalize and lookup rxcui = get_rxcui(potential_prescription) label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription) if not rxcui and not label: warnings.append(f"INFO: Could not identify '{potential_prescription}'.") # Allergy checks for alg in allergy_list: if alg == presc_lower: warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{alg}'.") # Additional cross-allergy logic... # Drug-drug interactions if rxcui or label: for med in current: if med and med != presc_lower: # interaction search on label sections interactions = [] if label and label.get("drug_interactions"): interactions = search_text_list(label["drug_interactions"], [med]) if interactions: warnings.append( f"Potential Interaction: '{potential_prescription}' & '{med}'. Snippets: {'; '.join(interactions)}" ) else: warnings.append(f"INFO: Skipped interaction check for '{potential_prescription}'.") status = "warning" if warnings else "clear" message = ( f"Interaction/Allergy check for '{potential_prescription}': {len(warnings)} issue(s)." if warnings else f"No major issues for '{potential_prescription}'." ) return json.dumps({"status": status, "message": message, "warnings": warnings}) @tool("flag_risk", args_schema=FlagRiskInput) def flag_risk(risk_description: str, urgency: str) -> str: return json.dumps({ "status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency." }) # Initialize search tool and tool list search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results") all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool] # --- LangGraph Setup --- class AgentState(TypedDict): messages: Annotated[List[Any], operator.add] patient_data: Optional[Dict] summary: Optional[str] interaction_warnings: Optional[List[str]] # LLM and executor llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME) model_with_tools = llm.bind_tools(all_tools) tool_executor = ToolExecutor(all_tools) def agent_node(state: AgentState) -> Dict: """Invoke the LLM agent node.""" msgs = state['messages'][:] if not msgs or not isinstance(msgs[0], SystemMessage): msgs.insert(0, SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)) try: response = model_with_tools.invoke(msgs) return {"messages": [response]} except Exception as e: traceback.print_exc() err = AIMessage(content=f"Error: {e}") return {"messages": [err]} def tool_node(state: AgentState) -> Dict: """Execute any pending tool calls from the last AI message.""" last = state['messages'][-1] if not isinstance(last, AIMessage) or not getattr(last, 'tool_calls', None): return {"messages": [], "interaction_warnings": None} calls = last.tool_calls # Enforce safety: require interaction check before prescribing blocked_ids = set() for call in calls: if call['name'] == 'prescribe_medication': # block if no interaction check for this med med = call['args'].get('medication_name', '').lower() if not any( c['name'] == 'check_drug_interactions' and c['args'].get('potential_prescription', '').lower() == med for c in calls ): blocked_ids.add(call['id']) valid_calls = [c for c in calls if c['id'] not in blocked_ids] # Augment interaction checks with patient data for c in valid_calls: if c['name'] == 'check_drug_interactions': c['args']['current_medications'] = state.get('patient_data', {}).get('medications', {}).get('current', []) c['args']['allergies'] = state.get('patient_data', {}).get('allergies', []) results = [] warnings: List[str] = [] try: responses = tool_executor.batch(valid_calls, return_exceptions=True) for call, resp in zip(valid_calls, responses): if isinstance(resp, Exception): traceback.print_exc() content = json.dumps({"status": "error", "message": str(resp)}) else: content = str(resp) if call['name'] == 'check_drug_interactions': data = json.loads(content) if data.get('warnings'): warnings.extend(data['warnings']) results.append(ToolMessage(content=content, tool_call_id=call['id'], name=call['name'])) except Exception as e: traceback.print_exc() content = json.dumps({"status": "error", "message": str(e)}) for c in valid_calls: results.append(ToolMessage(content=content, tool_call_id=c['id'], name=c['name'])) return {"messages": results, "interaction_warnings": warnings or None} def reflection_node(state: AgentState) -> Dict: """Review interaction warnings and adjust plan if needed.""" warnings = state.get('interaction_warnings') if not warnings: return {"messages": [], "interaction_warnings": None} # Find the AI message that triggered the warnings trigger_id = None for msg in reversed(state['messages']): if isinstance(msg, ToolMessage) and msg.name == 'check_drug_interactions': trigger_id = msg.tool_call_id break prompt = ( f"Interaction warnings:\n{json.dumps(warnings, indent=2)}\n" "Provide a revised therapeutics plan addressing these issues." ) msgs = [ SystemMessage(content="Safety reflection on drug interactions."), HumanMessage(content=prompt) ] try: resp = llm.invoke(msgs) return {"messages": [AIMessage(content=resp.content)], "interaction_warnings": None} except Exception as e: traceback.print_exc() return {"messages": [AIMessage(content=f"Reflection error: {e}")], "interaction_warnings": None} def should_continue(state: AgentState) -> str: last = state['messages'][-1] if state['messages'] else None if not isinstance(last, AIMessage): return 'end_conversation_turn' if getattr(last, 'tool_calls', None): return 'continue_tools' return 'end_conversation_turn' def after_tools_router(state: AgentState) -> str: if state.get('interaction_warnings'): return 'reflect_on_warnings' return 'continue_to_agent' class ClinicalAgent: def __init__(self): graph = StateGraph(AgentState) graph.add_node('agent', agent_node) graph.add_node('tools', tool_node) graph.add_node('reflection', reflection_node) graph.set_entry_point('agent') graph.add_conditional_edges( 'agent', should_continue, {'continue_tools': 'tools', 'end_conversation_turn': END} ) graph.add_conditional_edges( 'tools', after_tools_router, {'reflect_on_warnings': 'reflection', 'continue_to_agent': 'agent'} ) graph.add_edge('reflection', 'agent') self.app = graph.compile() def invoke_turn(self, state: Dict) -> Dict: try: result = self.app.invoke(state, {'recursion_limit': 15}) result.setdefault('summary', state.get('summary')) result.setdefault('interaction_warnings', None) return result except Exception as e: traceback.print_exc() err = AIMessage(content=f"Critical error: {e}") return { 'messages': state.get('messages', []) + [err], 'patient_data': state.get('patient_data'), 'summary': state.get('summary'), 'interaction_warnings': None }