Create utils/build_umls_faiss_index.py
Browse files
utils/build_umls_faiss_index.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Build a FAISS index and metadata from a UMLS CSV.
|
4 |
+
Outputs:
|
5 |
+
- `umls_embeddings.npy`
|
6 |
+
- `umls_index.faiss`
|
7 |
+
- `umls_metadata.json`
|
8 |
+
"""
|
9 |
+
import argparse, csv, json
|
10 |
+
import numpy as np
|
11 |
+
import faiss
|
12 |
+
import torch
|
13 |
+
from transformers import AutoTokenizer, AutoModel
|
14 |
+
|
15 |
+
def encode(texts, tokenizer, model, batch_size=32):
|
16 |
+
embs = []
|
17 |
+
model.eval()
|
18 |
+
for i in range(0, len(texts), batch_size):
|
19 |
+
batch = texts[i:i+batch_size]
|
20 |
+
inputs = tokenizer(batch, padding=True, truncation=True, return_tensors='pt')
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
cls = outputs.last_hidden_state[:,0,:].cpu().numpy()
|
24 |
+
normed = cls / np.linalg.norm(cls, axis=1, keepdims=True)
|
25 |
+
embs.append(normed)
|
26 |
+
return np.vstack(embs)
|
27 |
+
|
28 |
+
if __name__ == '__main__':
|
29 |
+
parser = argparse.ArgumentParser()
|
30 |
+
parser.add_argument('--input', required=True, help='CSV with cui,name,definition,source')
|
31 |
+
parser.add_argument('--out_meta', required=True)
|
32 |
+
parser.add_argument('--out_emb', required=True)
|
33 |
+
parser.add_argument('--out_idx', required=True)
|
34 |
+
parser.add_argument('--model', default='microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL')
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
# Load
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
39 |
+
model = AutoModel.from_pretrained(args.model)
|
40 |
+
|
41 |
+
cuis, texts, defs, srcs = [], [], [], []
|
42 |
+
with open(args.input) as f:
|
43 |
+
for row in csv.DictReader(f):
|
44 |
+
cuis.append(row['cui'])
|
45 |
+
texts.append(row['name'] + (' - ' + row.get('definition','')))
|
46 |
+
defs.append(row.get('definition',''))
|
47 |
+
srcs.append(row.get('source','UMLS'))
|
48 |
+
|
49 |
+
print(f'Encoding {len(texts)} concepts...')
|
50 |
+
embeddings = encode(texts, tokenizer, model)
|
51 |
+
|
52 |
+
# Build FAISS
|
53 |
+
dim = embeddings.shape[1]
|
54 |
+
index = faiss.IndexFlatIP(dim)
|
55 |
+
index.add(embeddings)
|
56 |
+
|
57 |
+
# Save
|
58 |
+
np.save(args.out_emb, embeddings)
|
59 |
+
faiss.write_index(index, args.out_idx)
|
60 |
+
|
61 |
+
meta = {str(i): {'cui': cuis[i], 'name': texts[i], 'definition': defs[i], 'source': srcs[i]}
|
62 |
+
for i in range(len(cuis))}
|
63 |
+
json.dump(meta, open(args.out_meta, 'w'), indent=2)
|
64 |
+
print('Done.')
|