Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,76 +9,107 @@ Features
|
|
9 |
2. Score rรฉsumรฉ vs. job description
|
10 |
3. AI Section Co-Pilot (rewrite, quantify, bulletizeโฆ)
|
11 |
4. Cover-letter generator
|
12 |
-
5. Job-description via LinkedIn API (OAuth client_credentials)
|
13 |
6. Multilingual export via Deep-Translator (DeepL backend)
|
14 |
"""
|
15 |
|
16 |
-
import os
|
|
|
|
|
|
|
17 |
import requests
|
18 |
import gradio as gr
|
19 |
import google.generativeai as genai
|
20 |
from dotenv import load_dotenv
|
|
|
21 |
from docx import Document
|
22 |
from reportlab.lib.pagesizes import LETTER
|
23 |
from reportlab.pdfgen import canvas
|
24 |
from deep_translator import DeeplTranslator
|
25 |
|
26 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
27 |
-
# Load
|
28 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
29 |
load_dotenv()
|
30 |
|
31 |
-
# Gemini
|
32 |
-
|
|
|
33 |
GEMINI = genai.GenerativeModel("gemini-1.5-pro-latest")
|
34 |
|
35 |
# DeepL via Deep-Translator
|
36 |
DEEPL_KEY = os.getenv("DEEPL_API_KEY")
|
37 |
def translate_text(text: str, tgt: str) -> str:
|
38 |
-
if not DEEPL_KEY or tgt.upper()=="EN":
|
|
|
39 |
try:
|
40 |
return DeeplTranslator(api_key=DEEPL_KEY, target=tgt).translate(text)
|
41 |
except Exception as e:
|
42 |
return f"[Translation Error] {e}\n\n{text}"
|
43 |
|
44 |
-
# LinkedIn OAuth 2.0 Client
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
def get_linkedin_token():
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
resp = requests.post(
|
54 |
"https://www.linkedin.com/oauth/v2/accessToken",
|
55 |
data={
|
56 |
"grant_type": "client_credentials",
|
57 |
-
"client_id":
|
58 |
-
"client_secret":
|
59 |
},
|
|
|
60 |
)
|
61 |
-
resp.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
return "[Error] Unable to parse job ID from URL."
|
71 |
-
|
72 |
-
|
73 |
-
# LinkedIn
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
81 |
-
# AI & File
|
82 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
83 |
def ask_gemini(prompt: str, temp: float = 0.6) -> str:
|
84 |
try:
|
@@ -109,7 +140,7 @@ def save_pdf(text: str) -> str:
|
|
109 |
return f.name
|
110 |
|
111 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
112 |
-
# Core
|
113 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
114 |
LANGS = {
|
115 |
"EN": "English", "DE": "German", "FR": "French", "ES": "Spanish",
|
@@ -119,13 +150,14 @@ LANGS = {
|
|
119 |
|
120 |
def generate_resume(name, email, phone, summary, exp, edu, skills, lang):
|
121 |
prompt = f"""
|
122 |
-
Create a professional rรฉsumรฉ in Markdown
|
|
|
123 |
|
124 |
Name: {name}
|
125 |
Email: {email}
|
126 |
Phone: {phone}
|
127 |
|
128 |
-
Summary:
|
129 |
{summary}
|
130 |
|
131 |
Experience:
|
@@ -144,9 +176,9 @@ def generate_and_export(name, email, phone, summary, exp, edu, skills, lang):
|
|
144 |
md = generate_resume(name, email, phone, summary, exp, edu, skills, lang)
|
145 |
return md, save_docx(md), save_pdf(md)
|
146 |
|
147 |
-
def score_resume(resume_md,
|
148 |
prompt = f"""
|
149 |
-
Evaluate this rรฉsumรฉ
|
150 |
|
151 |
### Match Score
|
152 |
<0-100>
|
@@ -156,27 +188,33 @@ Evaluate this rรฉsumรฉ vs. the job description. Return Markdown:
|
|
156 |
"""
|
157 |
return ask_gemini(prompt, temp=0.4)
|
158 |
|
159 |
-
def refine_section(
|
160 |
-
prompt = f"
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
out = ask_gemini(prompt)
|
162 |
return translate_text(out, lang)
|
163 |
|
164 |
-
def generate_cover_letter(resume_md,
|
165 |
prompt = f"""
|
166 |
-
Draft a one-page cover letter (
|
167 |
Salutation: "Dear Hiring Manager,"
|
168 |
|
169 |
Rรฉsumรฉ:
|
170 |
{resume_md}
|
171 |
|
172 |
Job Description:
|
173 |
-
{
|
174 |
"""
|
175 |
letter = ask_gemini(prompt)
|
176 |
return translate_text(letter, lang)
|
177 |
|
178 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
179 |
-
# Gradio
|
180 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
181 |
with gr.Blocks(title="AI Resume Studio") as demo:
|
182 |
gr.Markdown("## ๐ง AI Resume Studio (Gemini ร DeepL ร LinkedIn)")
|
@@ -184,19 +222,23 @@ with gr.Blocks(title="AI Resume Studio") as demo:
|
|
184 |
# Tab 1: Generate Rรฉsumรฉ
|
185 |
with gr.Tab("๐ Generate Rรฉsumรฉ"):
|
186 |
with gr.Row():
|
187 |
-
name_in, email_in, phone_in =
|
188 |
-
|
|
|
|
|
|
|
|
|
189 |
exp_in = gr.Textbox(label="Experience")
|
190 |
edu_in = gr.Textbox(label="Education")
|
191 |
skills_in = gr.Textbox(label="Skills")
|
192 |
lang_in = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
193 |
|
194 |
-
out_md
|
195 |
-
out_docx
|
196 |
-
out_pdf
|
197 |
-
|
198 |
|
199 |
-
|
200 |
generate_and_export,
|
201 |
inputs=[name_in, email_in, phone_in, sum_in, exp_in, edu_in, skills_in, lang_in],
|
202 |
outputs=[out_md, out_docx, out_pdf],
|
@@ -204,36 +246,39 @@ with gr.Blocks(title="AI Resume Studio") as demo:
|
|
204 |
|
205 |
# Tab 2: Score Rรฉsumรฉ
|
206 |
with gr.Tab("๐งฎ Score Rรฉsumรฉ Against Job"):
|
207 |
-
res_in
|
208 |
-
jd_in
|
209 |
score_out = gr.Markdown(label="Score & Suggestions")
|
210 |
-
|
211 |
-
|
212 |
|
213 |
# Tab 3: AI Section Co-Pilot
|
214 |
with gr.Tab("โ๏ธ AI Section Co-Pilot"):
|
215 |
sec_in = gr.Textbox(label="Section Text", lines=6)
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
218 |
sec_out = gr.Textbox(label="AI Output", lines=6)
|
219 |
-
|
220 |
-
|
221 |
|
222 |
# Tab 4: Cover-Letter Generator
|
223 |
with gr.Tab("๐ง Cover-Letter Generator"):
|
224 |
-
cv_res
|
225 |
-
cv_jd
|
226 |
-
cv_tone
|
227 |
-
cv_lang
|
228 |
-
cv_out
|
229 |
-
|
230 |
-
|
231 |
|
232 |
# Tab 5: LinkedIn Job Fetcher
|
233 |
with gr.Tab("๐ Fetch Job via LinkedIn API"):
|
234 |
url_in = gr.Textbox(label="LinkedIn Job URL")
|
235 |
jd_out = gr.Textbox(label="Job Description", lines=12)
|
236 |
-
|
237 |
-
|
238 |
|
239 |
demo.launch(share=False)
|
|
|
9 |
2. Score rรฉsumรฉ vs. job description
|
10 |
3. AI Section Co-Pilot (rewrite, quantify, bulletizeโฆ)
|
11 |
4. Cover-letter generator
|
12 |
+
5. Job-description via LinkedIn API (OAuth client_credentials) + fallback scraping
|
13 |
6. Multilingual export via Deep-Translator (DeepL backend)
|
14 |
"""
|
15 |
|
16 |
+
import os
|
17 |
+
import re
|
18 |
+
import time
|
19 |
+
import tempfile
|
20 |
import requests
|
21 |
import gradio as gr
|
22 |
import google.generativeai as genai
|
23 |
from dotenv import load_dotenv
|
24 |
+
from bs4 import BeautifulSoup
|
25 |
from docx import Document
|
26 |
from reportlab.lib.pagesizes import LETTER
|
27 |
from reportlab.pdfgen import canvas
|
28 |
from deep_translator import DeeplTranslator
|
29 |
|
30 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
31 |
+
# Load Secrets & Configure Clients
|
32 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
33 |
load_dotenv()
|
34 |
|
35 |
+
# Gemini
|
36 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
37 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
38 |
GEMINI = genai.GenerativeModel("gemini-1.5-pro-latest")
|
39 |
|
40 |
# DeepL via Deep-Translator
|
41 |
DEEPL_KEY = os.getenv("DEEPL_API_KEY")
|
42 |
def translate_text(text: str, tgt: str) -> str:
|
43 |
+
if not DEEPL_KEY or tgt.upper() == "EN":
|
44 |
+
return text
|
45 |
try:
|
46 |
return DeeplTranslator(api_key=DEEPL_KEY, target=tgt).translate(text)
|
47 |
except Exception as e:
|
48 |
return f"[Translation Error] {e}\n\n{text}"
|
49 |
|
50 |
+
# LinkedIn OAuth 2.0 (Client Credentials)
|
51 |
+
CLIENT_ID = os.getenv("LINKEDIN_CLIENT_ID")
|
52 |
+
CLIENT_SECRET = os.getenv("LINKEDIN_CLIENT_SECRET")
|
53 |
+
_token_cache = {}
|
54 |
+
|
55 |
def get_linkedin_token():
|
56 |
+
data = _token_cache.get("data", {})
|
57 |
+
if data and data.get("expires_at", 0) > time.time():
|
58 |
+
return data["access_token"]
|
59 |
+
|
60 |
resp = requests.post(
|
61 |
"https://www.linkedin.com/oauth/v2/accessToken",
|
62 |
data={
|
63 |
"grant_type": "client_credentials",
|
64 |
+
"client_id": CLIENT_ID,
|
65 |
+
"client_secret": CLIENT_SECRET,
|
66 |
},
|
67 |
+
timeout=10
|
68 |
)
|
69 |
+
if resp.status_code != 200:
|
70 |
+
# raise or let caller fallback
|
71 |
+
resp.raise_for_status()
|
72 |
+
|
73 |
+
payload = resp.json()
|
74 |
+
payload["expires_at"] = time.time() + payload.get("expires_in", 0) - 60
|
75 |
+
_token_cache["data"] = payload
|
76 |
+
return payload["access_token"]
|
77 |
+
|
78 |
+
def fetch_job_via_api(url: str) -> str:
|
79 |
+
# Extract numeric job ID
|
80 |
+
m = re.search(r"(?:jobs/view/|currentJobId=)(\d+)", url)
|
81 |
+
if not m:
|
82 |
return "[Error] Unable to parse job ID from URL."
|
83 |
+
job_id = m.group(1)
|
84 |
+
|
85 |
+
# Try LinkedIn Jobs API
|
86 |
+
try:
|
87 |
+
token = get_linkedin_token()
|
88 |
+
api_url = f"https://api.linkedin.com/v2/jobPosts/{job_id}?projection=(description)"
|
89 |
+
r = requests.get(api_url,
|
90 |
+
headers={"Authorization": f"Bearer {token}"},
|
91 |
+
timeout=10)
|
92 |
+
r.raise_for_status()
|
93 |
+
return r.json().get("description", "")
|
94 |
+
except Exception:
|
95 |
+
# Fallback to scraping
|
96 |
+
try:
|
97 |
+
page = requests.get(url, headers={"User-Agent":"Mozilla/5.0"}, timeout=10)
|
98 |
+
soup = BeautifulSoup(page.text, "html.parser")
|
99 |
+
for sel in [
|
100 |
+
"div.jobsearch-jobDescriptionText",
|
101 |
+
"section.description",
|
102 |
+
"div.jobs-description__content"
|
103 |
+
]:
|
104 |
+
block = soup.select_one(sel)
|
105 |
+
if block:
|
106 |
+
return block.get_text(" ", strip=True)
|
107 |
+
return "[Error] No description found via scraping."
|
108 |
+
except Exception as e:
|
109 |
+
return f"[Scrape Error] {e}"
|
110 |
|
111 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
112 |
+
# AI & File Utilities
|
113 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
114 |
def ask_gemini(prompt: str, temp: float = 0.6) -> str:
|
115 |
try:
|
|
|
140 |
return f.name
|
141 |
|
142 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
143 |
+
# Core Logic
|
144 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
145 |
LANGS = {
|
146 |
"EN": "English", "DE": "German", "FR": "French", "ES": "Spanish",
|
|
|
150 |
|
151 |
def generate_resume(name, email, phone, summary, exp, edu, skills, lang):
|
152 |
prompt = f"""
|
153 |
+
Create a professional rรฉsumรฉ in Markdown without first-person pronouns.
|
154 |
+
Output language: {LANGS[lang]}
|
155 |
|
156 |
Name: {name}
|
157 |
Email: {email}
|
158 |
Phone: {phone}
|
159 |
|
160 |
+
Professional Summary:
|
161 |
{summary}
|
162 |
|
163 |
Experience:
|
|
|
176 |
md = generate_resume(name, email, phone, summary, exp, edu, skills, lang)
|
177 |
return md, save_docx(md), save_pdf(md)
|
178 |
|
179 |
+
def score_resume(resume_md, jd):
|
180 |
prompt = f"""
|
181 |
+
Evaluate this rรฉsumรฉ against the job description. Return compact Markdown:
|
182 |
|
183 |
### Match Score
|
184 |
<0-100>
|
|
|
188 |
"""
|
189 |
return ask_gemini(prompt, temp=0.4)
|
190 |
|
191 |
+
def refine_section(text, instr, lang):
|
192 |
+
prompt = f"""
|
193 |
+
Apply the following instruction to this rรฉsumรฉ section. Respond in {LANGS[lang]}.
|
194 |
+
|
195 |
+
Instruction: {instr}
|
196 |
+
Section:
|
197 |
+
{text}
|
198 |
+
"""
|
199 |
out = ask_gemini(prompt)
|
200 |
return translate_text(out, lang)
|
201 |
|
202 |
+
def generate_cover_letter(resume_md, jd, tone, lang):
|
203 |
prompt = f"""
|
204 |
+
Draft a one-page cover letter (max 300 words), in a {tone} tone, using {LANGS[lang]}.
|
205 |
Salutation: "Dear Hiring Manager,"
|
206 |
|
207 |
Rรฉsumรฉ:
|
208 |
{resume_md}
|
209 |
|
210 |
Job Description:
|
211 |
+
{jd}
|
212 |
"""
|
213 |
letter = ask_gemini(prompt)
|
214 |
return translate_text(letter, lang)
|
215 |
|
216 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
217 |
+
# Gradio App
|
218 |
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
219 |
with gr.Blocks(title="AI Resume Studio") as demo:
|
220 |
gr.Markdown("## ๐ง AI Resume Studio (Gemini ร DeepL ร LinkedIn)")
|
|
|
222 |
# Tab 1: Generate Rรฉsumรฉ
|
223 |
with gr.Tab("๐ Generate Rรฉsumรฉ"):
|
224 |
with gr.Row():
|
225 |
+
name_in, email_in, phone_in = (
|
226 |
+
gr.Textbox(label="Name"),
|
227 |
+
gr.Textbox(label="Email"),
|
228 |
+
gr.Textbox(label="Phone"),
|
229 |
+
)
|
230 |
+
sum_in = gr.Textbox(label="Professional Summary")
|
231 |
exp_in = gr.Textbox(label="Experience")
|
232 |
edu_in = gr.Textbox(label="Education")
|
233 |
skills_in = gr.Textbox(label="Skills")
|
234 |
lang_in = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
235 |
|
236 |
+
out_md = gr.Markdown(label="Rรฉsume (Markdown)")
|
237 |
+
out_docx = gr.File(label="โฌ Download .docx")
|
238 |
+
out_pdf = gr.File(label="โฌ Download .pdf")
|
239 |
+
btn_gen = gr.Button("Generate")
|
240 |
|
241 |
+
btn_gen.click(
|
242 |
generate_and_export,
|
243 |
inputs=[name_in, email_in, phone_in, sum_in, exp_in, edu_in, skills_in, lang_in],
|
244 |
outputs=[out_md, out_docx, out_pdf],
|
|
|
246 |
|
247 |
# Tab 2: Score Rรฉsumรฉ
|
248 |
with gr.Tab("๐งฎ Score Rรฉsumรฉ Against Job"):
|
249 |
+
res_in = gr.Textbox(label="Rรฉsumรฉ (Markdown)", lines=10)
|
250 |
+
jd_in = gr.Textbox(label="Job Description", lines=8)
|
251 |
score_out = gr.Markdown(label="Score & Suggestions")
|
252 |
+
btn_score = gr.Button("Evaluate")
|
253 |
+
btn_score.click(score_resume, inputs=[res_in, jd_in], outputs=score_out)
|
254 |
|
255 |
# Tab 3: AI Section Co-Pilot
|
256 |
with gr.Tab("โ๏ธ AI Section Co-Pilot"):
|
257 |
sec_in = gr.Textbox(label="Section Text", lines=6)
|
258 |
+
act_in = gr.Radio(
|
259 |
+
["Rewrite", "Make More Concise", "Quantify Achievements", "Convert to Bullet Points"],
|
260 |
+
label="Action"
|
261 |
+
)
|
262 |
+
lang_sec = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
263 |
sec_out = gr.Textbox(label="AI Output", lines=6)
|
264 |
+
btn_sec = gr.Button("Apply")
|
265 |
+
btn_sec.click(refine_section, inputs=[sec_in, act_in, lang_sec], outputs=sec_out)
|
266 |
|
267 |
# Tab 4: Cover-Letter Generator
|
268 |
with gr.Tab("๐ง Cover-Letter Generator"):
|
269 |
+
cv_res = gr.Textbox(label="Rรฉsumรฉ (Markdown)", lines=12)
|
270 |
+
cv_jd = gr.Textbox(label="Job Description", lines=8)
|
271 |
+
cv_tone = gr.Radio(["Professional", "Friendly", "Enthusiastic"], label="Tone")
|
272 |
+
cv_lang = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
|
273 |
+
cv_out = gr.Markdown(label="Cover Letter")
|
274 |
+
btn_cv = gr.Button("Generate")
|
275 |
+
btn_cv.click(generate_cover_letter, inputs=[cv_res, cv_jd, cv_tone, cv_lang], outputs=cv_out)
|
276 |
|
277 |
# Tab 5: LinkedIn Job Fetcher
|
278 |
with gr.Tab("๐ Fetch Job via LinkedIn API"):
|
279 |
url_in = gr.Textbox(label="LinkedIn Job URL")
|
280 |
jd_out = gr.Textbox(label="Job Description", lines=12)
|
281 |
+
btn_fetch = gr.Button("Fetch from LinkedIn")
|
282 |
+
btn_fetch.click(fetch_job_via_api, inputs=[url_in], outputs=[jd_out])
|
283 |
|
284 |
demo.launch(share=False)
|